분수를 소수로 변환하는 계산기
분수를 소수로 단계별 변환
이 계산기는 주어진 분수(진분수 또는 가분수)나 대분수를 소수(순환소수일 수도 있음)로 변환하며, 단계별 풀이를 제공합니다.
Solution
Your input: convert $$$\frac{1300}{15}$$$ into a decimal.
Write the problem in the special format:
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccc}\phantom{8}&\phantom{6}&\phantom{.}&\phantom{6}&\phantom{6}&\phantom{6}\end{array}&\\15&\phantom{-}\enclose{longdiv}{\begin{array}{cccc}1&3&0&0\end{array}}&\\&\begin{array}{llll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 1
How many $$$15$$$'s are in $$$1$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$1-15 \cdot 0 = 1 - 0= 1$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}\color{Peru}{0}&\phantom{0}&\phantom{8}&\phantom{6}&\phantom{.}&\phantom{6}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{15}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}\color{Peru}{1}& 3 \downarrow&0&0&.&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&3&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 2
How many $$$15$$$'s are in $$$13$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$13-15 \cdot 0 = 13 - 0= 13$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&\color{BlueViolet}{0}&\phantom{8}&\phantom{6}&\phantom{.}&\phantom{6}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{15}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}1&3& 0 \downarrow&0&.&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{BlueViolet}{1}&\color{BlueViolet}{3}&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&3&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 3
How many $$$15$$$'s are in $$$130$$$?
The answer is $$$8$$$.
Write down $$$8$$$ in the upper part of the table.
Now, $$$130-15 \cdot 8 = 130 - 120= 10$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&\color{SaddleBrown}{8}&\phantom{6}&\phantom{.}&\phantom{6}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{15}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}1&3&0& 0 \downarrow&.&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&3&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}\color{SaddleBrown}{1}&\color{SaddleBrown}{3}&\color{SaddleBrown}{0}&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}1&2&0&\phantom{.}\\\hline\phantom{lll}&1&0&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 4
How many $$$15$$$'s are in $$$100$$$?
The answer is $$$6$$$.
Write down $$$6$$$ in the upper part of the table.
Now, $$$100-15 \cdot 6 = 100 - 90= 10$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&8&\color{Green}{6}&\phantom{.}&\phantom{6}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{15}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}1&3&0&0&.& 0 \downarrow&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&3&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&3&0&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}1&2&0&\phantom{.}\\\hline\phantom{lll}&\color{Green}{1}&\color{Green}{0}&\color{Green}{0}&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&9&0&\phantom{.}\\\hline\phantom{lll}&&1&0&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 5
How many $$$15$$$'s are in $$$100$$$?
The answer is $$$6$$$.
Write down $$$6$$$ in the upper part of the table.
Now, $$$100-15 \cdot 6 = 100 - 90= 10$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&8&6&.&\color{DarkBlue}{6}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{15}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}1&3&0&0&.&0& 0 \downarrow&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&3&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&3&0&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}1&2&0&\phantom{.}\\\hline\phantom{lll}&1&0&0&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&9&0&\phantom{.}\\\hline\phantom{lll}&&\color{DarkBlue}{1}&\color{DarkBlue}{0}&\phantom{.}&\color{DarkBlue}{0}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&\phantom{.}&9&0\\\hline\phantom{lll}&&&1&\phantom{.}&0&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 6
How many $$$15$$$'s are in $$$100$$$?
The answer is $$$6$$$.
Write down $$$6$$$ in the upper part of the table.
Now, $$$100-15 \cdot 6 = 100 - 90= 10$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&8&6&.&6&\color{DarkCyan}{6}&\phantom{6}\end{array}&\\\color{Magenta}{15}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}1&3&0&0&.&0&0& 0 \downarrow\end{array}}&\\&\begin{array}{lllllll}-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&3&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&3&0&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}1&2&0&\phantom{.}\\\hline\phantom{lll}&1&0&0&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&9&0&\phantom{.}\\\hline\phantom{lll}&&1&0&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&\phantom{.}&9&0\\\hline\phantom{lll}&&&\color{DarkCyan}{1}&\phantom{.}&\color{DarkCyan}{0}&\color{DarkCyan}{0}\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&9&\phantom{.}&0\\\hline\phantom{lll}&&&&&1&0&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 7
How many $$$15$$$'s are in $$$100$$$?
The answer is $$$6$$$.
Write down $$$6$$$ in the upper part of the table.
Now, $$$100-15 \cdot 6 = 100 - 90= 10$$$.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&8&6&.&6&6&\color{Crimson}{6}\end{array}&\\\color{Magenta}{15}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}1&3&0&0&.&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&3&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&3&0&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}1&2&0&\phantom{.}\\\hline\phantom{lll}&1&0&0&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&9&0&\phantom{.}\\\hline\phantom{lll}&&1&0&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&\phantom{.}&9&0\\\hline\phantom{lll}&&&1&\phantom{.}&0&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&9&\phantom{.}&0\\\hline\phantom{lll}&&&&&\color{Crimson}{1}&\color{Crimson}{0}&\color{Crimson}{0}\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&9&0\\\hline\phantom{lll}&&&&&&1&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
As can be seen, the digits are repeating with some period, therefore it is a repeating (or recurring) decimal: $$$\frac{1300}{15}=86.6 \overline{6}$$$
Answer: $$$\frac{1300}{15}=86.6\overline{6}$$$