분수를 소수로 변환하는 계산기
분수를 소수로 단계별 변환
이 계산기는 주어진 분수(진분수 또는 가분수)나 대분수를 소수(순환소수일 수도 있음)로 변환하며, 단계별 풀이를 제공합니다.
Solution
Your input: convert $$$\frac{700}{14}$$$ into a decimal.
Write the problem in the special format:
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccc}\phantom{5}&\phantom{0}&\phantom{.}&\phantom{0}\end{array}&\\14&\phantom{-}\enclose{longdiv}{\begin{array}{ccc}7&0&0\end{array}}&\\&\begin{array}{lll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 1
How many $$$14$$$'s are in $$$7$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$7-14 \cdot 0 = 7 - 0= 7$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccc}\color{Blue}{0}&\phantom{5}&\phantom{0}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{14}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccc}\color{Blue}{7}& 0 \downarrow&0&.&0\end{array}}&\\&\begin{array}{llll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}7&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 2
How many $$$14$$$'s are in $$$70$$$?
The answer is $$$5$$$.
Write down $$$5$$$ in the upper part of the table.
Now, $$$70-14 \cdot 5 = 70 - 70= 0$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccc}0&\color{Green}{5}&\phantom{0}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{14}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccc}7&0& 0 \downarrow&.&0\end{array}}&\\&\begin{array}{llll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{Green}{7}&\color{Green}{0}&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}7&0&\phantom{.}\\\hline\phantom{lll}&0&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 3
How many $$$14$$$'s are in $$$0$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$0-14 \cdot 0 = 0 - 0= 0$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccc}0&5&\color{Purple}{0}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{14}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccc}7&0&0&.& 0 \downarrow\end{array}}&\\&\begin{array}{llll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}7&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}7&0&\phantom{.}\\\hline\phantom{lll}&\color{Purple}{0}&\color{Purple}{0}&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&0&\phantom{.}\\\hline\phantom{lll}&&0&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 4
How many $$$14$$$'s are in $$$0$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$0-14 \cdot 0 = 0 - 0= 0$$$.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccc}0&5&0&.&\color{Brown}{0}\end{array}&\\\color{Magenta}{14}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccc}7&0&0&.&0\end{array}}&\\&\begin{array}{llll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}7&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}7&0&\phantom{.}\\\hline\phantom{lll}&0&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&0&\phantom{.}\\\hline\phantom{lll}&&\color{Brown}{0}&\phantom{.}&\color{Brown}{0}\\&-&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&&\phantom{.}&0\\\hline\phantom{lll}&&&&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
As can be seen, the digits are repeating with some period, therefore it is a repeating (or recurring) decimal: $$$\frac{700}{14}=50.0 \overline{}$$$
Answer: $$$\frac{700}{14}=50.0\overline{}$$$