분수를 소수로 변환하는 계산기
분수를 소수로 단계별 변환
이 계산기는 주어진 분수(진분수 또는 가분수)나 대분수를 소수(순환소수일 수도 있음)로 변환하며, 단계별 풀이를 제공합니다.
Solution
Your input: convert $$$\frac{9900}{100}$$$ into a decimal.
Write the problem in the special format:
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccc}\phantom{9}&\phantom{9}&\phantom{.}&\phantom{0}\end{array}&\\100&\phantom{-}\enclose{longdiv}{\begin{array}{cccc}9&9&0&0\end{array}}&\\&\begin{array}{llll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 1
How many $$$100$$$'s are in $$$9$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$9-100 \cdot 0 = 9 - 0= 9$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}\color{SaddleBrown}{0}&\phantom{0}&\phantom{9}&\phantom{9}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{100}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}\color{SaddleBrown}{9}& 9 \downarrow&0&0&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}9&9&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 2
How many $$$100$$$'s are in $$$99$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$99-100 \cdot 0 = 99 - 0= 99$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&\color{Brown}{0}&\phantom{9}&\phantom{9}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{100}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}9&9& 0 \downarrow&0&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{Brown}{9}&\color{Brown}{9}&\phantom{.}\\-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}9&9&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 3
How many $$$100$$$'s are in $$$990$$$?
The answer is $$$9$$$.
Write down $$$9$$$ in the upper part of the table.
Now, $$$990-100 \cdot 9 = 990 - 900= 90$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&0&\color{DarkCyan}{9}&\phantom{9}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{100}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}9&9&0& 0 \downarrow&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}9&9&\phantom{.}\\-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}\color{DarkCyan}{9}&\color{DarkCyan}{9}&\color{DarkCyan}{0}&\phantom{.}\\-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}9&0&0&\phantom{.}\\\hline\phantom{lll}&9&0&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 4
How many $$$100$$$'s are in $$$900$$$?
The answer is $$$9$$$.
Write down $$$9$$$ in the upper part of the table.
Now, $$$900-100 \cdot 9 = 900 - 900= 0$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&0&9&\color{Peru}{9}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{100}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}9&9&0&0&.& 0 \downarrow\end{array}}&\\&\begin{array}{lllll}-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}9&9&\phantom{.}\\-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}9&9&0&\phantom{.}\\-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}9&0&0&\phantom{.}\\\hline\phantom{lll}&\color{Peru}{9}&\color{Peru}{0}&\color{Peru}{0}&\phantom{.}\\-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&9&0&0&\phantom{.}\\\hline\phantom{lll}&&&0&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 5
How many $$$100$$$'s are in $$$0$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$0-100 \cdot 0 = 0 - 0= 0$$$.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&0&9&9&.&\color{Violet}{0}\end{array}&\\\color{Magenta}{100}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}9&9&0&0&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}9&9&\phantom{.}\\-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}9&9&0&\phantom{.}\\-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}9&0&0&\phantom{.}\\\hline\phantom{lll}&9&0&0&\phantom{.}\\-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&9&0&0&\phantom{.}\\\hline\phantom{lll}&&&\color{Violet}{0}&\phantom{.}&\color{Violet}{0}\\&&-&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&&&\phantom{.}&0\\\hline\phantom{lll}&&&&&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Since the remainder is $$$0$$$, then we are done.
Therefore, $$$\frac{9900}{100}=99.0$$$
Answer: $$$\frac{9900}{100}=99.0$$$