$$$0 \oplus 1$$$을(를) 간단히 하세요
사용자 입력
부울 식 $$$0 \oplus 1$$$을 단순화하십시오.
풀이
공식 $$$x \oplus y = \left(x \cdot \overline{y}\right) + \left(\overline{x} \cdot y\right)$$$을(를) $$$x = 0$$$ 및 $$$y = 1$$$에 적용하세요:
$${\color{red}\left(0 \oplus 1\right)} = {\color{red}\left(\left(0 \cdot \overline{1}\right) + \left(\overline{0} \cdot 1\right)\right)}$$$$$\overline{1} = 0$$$ 부정 법칙을 적용합니다:
$$\left(0 \cdot {\color{red}\left(\overline{1}\right)}\right) + \left(\overline{0} \cdot 1\right) = \left(0 \cdot {\color{red}\left(0\right)}\right) + \left(\overline{0} \cdot 1\right)$$$$$\overline{0} = 1$$$ 부정 법칙을 적용합니다:
$$\left(0 \cdot 0\right) + \left({\color{red}\left(\overline{0}\right)} \cdot 1\right) = \left(0 \cdot 0\right) + \left({\color{red}\left(1\right)} \cdot 1\right)$$$$$x = 0$$$에 대해 지배(영, 무효) 법칙 $$$x \cdot 0 = 0$$$을 적용하세요:
$${\color{red}\left(0 \cdot 0\right)} + \left(1 \cdot 1\right) = {\color{red}\left(0\right)} + \left(1 \cdot 1\right)$$교환법칙을 적용하세요:
$${\color{red}\left(0 + \left(1 \cdot 1\right)\right)} = {\color{red}\left(\left(1 \cdot 1\right) + 0\right)}$$항등법칙 $$$x + 0 = x$$$을 $$$x = 1 \cdot 1$$$에 적용하십시오:
$${\color{red}\left(\left(1 \cdot 1\right) + 0\right)} = {\color{red}\left(1 \cdot 1\right)}$$항등법칙 $$$x \cdot 1 = x$$$을 $$$x = 1$$$에 적용하십시오:
$${\color{red}\left(1 \cdot 1\right)} = {\color{red}\left(1\right)}$$정답
$$$0 \oplus 1 = 1$$$
Please try a new game Rotatly