$$$\left[\begin{array}{cc}t & - t\\0 & t\end{array}\right]$$$ の随伴作用素
入力内容
$$$\left[\begin{array}{cc}t & - t\\0 & t\end{array}\right]$$$ の伴随行列を求めよ。
解答
正方行列の古典的伴随(伴随行列、adjugate または adjunct)とは、その余因子行列の転置である。
余因子行列は$$$\left[\begin{array}{cc}t & 0\\t & t\end{array}\right]$$$です (手順は余因子行列計算機を参照).
余因子行列の転置は $$$\left[\begin{array}{cc}t & t\\0 & t\end{array}\right]$$$ です(手順については matrix transpose calculator を参照してください)。
解答
随伴行列は$$$\left[\begin{array}{cc}t & t\\0 & t\end{array}\right]$$$Aです。
Please try a new game Rotatly