$$$\cosh{\left(x \right)}$$$, $$$\sinh{\left(x \right)}$$$, $$$\cos{\left(x \right)}$$$, $$$\sin{\left(x \right)}$$$ のウロン行列式

この計算機は、手順を示しながら、$$$4$$$ 個の関数 $$$\cosh{\left(x \right)}$$$, $$$\sinh{\left(x \right)}$$$, $$$\cos{\left(x \right)}$$$, $$$\sin{\left(x \right)}$$$ のワロンスキ行列式を求めます。
カンマ区切り。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\left\{f_{1} = \cosh{\left(x \right)}, f_{2} = \sinh{\left(x \right)}, f_{3} = \cos{\left(x \right)}, f_{4} = \sin{\left(x \right)}\right\}$$$ のウロンスキ行列式を計算してください。

解答

ワロンスキアンは次の行列式で与えられます: $$$W{\left(f_{1},f_{2},f_{3},f_{4} \right)}\left(x\right) = \left|\begin{array}{cccc}f_{1}\left(x\right) & f_{2}\left(x\right) & f_{3}\left(x\right) & f_{4}\left(x\right)\\f_{1}^{\prime}\left(x\right) & f_{2}^{\prime}\left(x\right) & f_{3}^{\prime}\left(x\right) & f_{4}^{\prime}\left(x\right)\\f_{1}^{\prime\prime}\left(x\right) & f_{2}^{\prime\prime}\left(x\right) & f_{3}^{\prime\prime}\left(x\right) & f_{4}^{\prime\prime}\left(x\right)\\f_{1}^{\prime\prime\prime}\left(x\right) & f_{2}^{\prime\prime\prime}\left(x\right) & f_{3}^{\prime\prime\prime}\left(x\right) & f_{4}^{\prime\prime\prime}\left(x\right)\end{array}\right|$$$

この場合、$$$W{\left(f_{1},f_{2},f_{3},f_{4} \right)}\left(x\right) = \left|\begin{array}{cccc}\cosh{\left(x \right)} & \sinh{\left(x \right)} & \cos{\left(x \right)} & \sin{\left(x \right)}\\\left(\cosh{\left(x \right)}\right)^{\prime } & \left(\sinh{\left(x \right)}\right)^{\prime } & \left(\cos{\left(x \right)}\right)^{\prime } & \left(\sin{\left(x \right)}\right)^{\prime }\\\left(\cosh{\left(x \right)}\right)^{\prime \prime } & \left(\sinh{\left(x \right)}\right)^{\prime \prime } & \left(\cos{\left(x \right)}\right)^{\prime \prime } & \left(\sin{\left(x \right)}\right)^{\prime \prime }\\\left(\cosh{\left(x \right)}\right)^{\prime \prime \prime } & \left(\sinh{\left(x \right)}\right)^{\prime \prime \prime } & \left(\cos{\left(x \right)}\right)^{\prime \prime \prime } & \left(\sin{\left(x \right)}\right)^{\prime \prime \prime }\end{array}\right|$$$ となります。

導関数を求めよ(手順は derivative calculator を参照):$$$W{\left(f_{1},f_{2},f_{3},f_{4} \right)}\left(x\right) = \left|\begin{array}{cccc}\cosh{\left(x \right)} & \sinh{\left(x \right)} & \cos{\left(x \right)} & \sin{\left(x \right)}\\\sinh{\left(x \right)} & \cosh{\left(x \right)} & - \sin{\left(x \right)} & \cos{\left(x \right)}\\\cosh{\left(x \right)} & \sinh{\left(x \right)} & - \cos{\left(x \right)} & - \sin{\left(x \right)}\\\sinh{\left(x \right)} & \cosh{\left(x \right)} & \sin{\left(x \right)} & - \cos{\left(x \right)}\end{array}\right|$$$

行列式を求めよ (手順については determinant calculator を参照): $$$\left|\begin{array}{cccc}\cosh{\left(x \right)} & \sinh{\left(x \right)} & \cos{\left(x \right)} & \sin{\left(x \right)}\\\sinh{\left(x \right)} & \cosh{\left(x \right)} & - \sin{\left(x \right)} & \cos{\left(x \right)}\\\cosh{\left(x \right)} & \sinh{\left(x \right)} & - \cos{\left(x \right)} & - \sin{\left(x \right)}\\\sinh{\left(x \right)} & \cosh{\left(x \right)} & \sin{\left(x \right)} & - \cos{\left(x \right)}\end{array}\right| = 4$$$

解答

ウロンスキ行列式は$$$4$$$Aに等しい。


Please try a new game Rotatly