ロンスキー行列式

電卓は、示されているステップで、関数のセットのロンスキー行列式を見つけます。最大5つの機能、2x2、3x3などをサポートします。

カンマ区切り。

電卓が何かを計算しなかった場合、エラーを特定した場合、または提案/フィードバックがある場合は、以下のコメントに記入してください。

あなたの入力

$$$\left\{f_{1} = \cos{\left(x \right)}, f_{2} = \sin{\left(x \right)}, f_{3} = \sin{\left(2 x \right)}\right\}$$$のロンスキー行列式を計算します。

解決

ロンスキー行列式は、次の行列式によって与えられます: $$$W{\left(f_{1},f_{2},f_{3} \right)}\left(x\right) = \left|\begin{array}{ccc}f_{1}\left(x\right) & f_{2}\left(x\right) & f_{3}\left(x\right)\\f_{1}^{\prime}\left(x\right) & f_{2}^{\prime}\left(x\right) & f_{3}^{\prime}\left(x\right)\\f_{1}^{\prime\prime}\left(x\right) & f_{2}^{\prime\prime}\left(x\right) & f_{3}^{\prime\prime}\left(x\right)\end{array}\right|$$$

私たちの場合、 $$$W{\left(f_{1},f_{2},f_{3} \right)}\left(x\right) = \left|\begin{array}{ccc}\cos{\left(x \right)} & \sin{\left(x \right)} & \sin{\left(2 x \right)}\\\left(\cos{\left(x \right)}\right)^{\prime } & \left(\sin{\left(x \right)}\right)^{\prime } & \left(\sin{\left(2 x \right)}\right)^{\prime }\\\left(\cos{\left(x \right)}\right)^{\prime \prime } & \left(\sin{\left(x \right)}\right)^{\prime \prime } & \left(\sin{\left(2 x \right)}\right)^{\prime \prime }\end{array}\right|$$$

導関数を見つけます(手順については、導関数計算機を参照してください): $$$W{\left(f_{1},f_{2},f_{3} \right)}\left(x\right) = \left|\begin{array}{ccc}\cos{\left(x \right)} & \sin{\left(x \right)} & \sin{\left(2 x \right)}\\- \sin{\left(x \right)} & \cos{\left(x \right)} & 2 \cos{\left(2 x \right)}\\- \cos{\left(x \right)} & - \sin{\left(x \right)} & - 4 \sin{\left(2 x \right)}\end{array}\right|$$$

行列式を見つけます(手順については、行列式計算機を参照してください): $$$\left|\begin{array}{ccc}\cos{\left(x \right)} & \sin{\left(x \right)} & \sin{\left(2 x \right)}\\- \sin{\left(x \right)} & \cos{\left(x \right)} & 2 \cos{\left(2 x \right)}\\- \cos{\left(x \right)} & - \sin{\left(x \right)} & - 4 \sin{\left(2 x \right)}\end{array}\right| = - 3 \sin{\left(2 x \right)}$$$

答え

$$$- 3 \sin{\left(2 x \right)}$$$Aと同じです。