テイラー級数およびマクローリン級数(べき級数)計算機
テイラー級数/マクローリン級数を段階的に求める
この計算機は、手順を表示しながら、与えられた関数のテイラー(または冪)級数展開を、与えられた点のまわりで求めます。テイラー多項式の次数を指定できます。マクローリン多項式が必要な場合は、展開点を$$$0$$$に設定するだけです。
Solution
Your input: calculate the Taylor (Maclaurin) series of $$$e^{x}$$$ up to $$$n=3$$$
A Maclaurin series is given by $$$f\left(x\right)=\sum\limits_{k=0}^{\infty}\frac{f^{(k)}\left(a\right)}{k!}x^k$$$
In our case, $$$f\left(x\right) \approx P\left(x\right) = \sum\limits_{k=0}^{n}\frac{f^{(k)}\left(a\right)}{k!}x^k=\sum\limits_{k=0}^{3}\frac{f^{(k)}\left(a\right)}{k!}x^k$$$
So, what we need to do to get the desired polynomial is to calculate the derivatives, evaluate them at the given point, and plug the results into the given formula.
$$$f^{(0)}\left(x\right)=f\left(x\right)=e^{x}$$$
Evaluate the function at the point: $$$f\left(0\right)=1$$$
Find the 1st derivative: $$$f^{(1)}\left(x\right)=\left(f^{(0)}\left(x\right)\right)^{\prime}=\left(e^{x}\right)^{\prime}=e^{x}$$$ (steps can be seen here).
Evaluate the 1st derivative at the given point: $$$\left(f\left(0\right)\right)^{\prime }=1$$$
Find the 2nd derivative: $$$f^{(2)}\left(x\right)=\left(f^{(1)}\left(x\right)\right)^{\prime}=\left(e^{x}\right)^{\prime}=e^{x}$$$ (steps can be seen here).
Evaluate the 2nd derivative at the given point: $$$\left(f\left(0\right)\right)^{\prime \prime }=1$$$
Find the 3rd derivative: $$$f^{(3)}\left(x\right)=\left(f^{(2)}\left(x\right)\right)^{\prime}=\left(e^{x}\right)^{\prime}=e^{x}$$$ (steps can be seen here).
Evaluate the 3rd derivative at the given point: $$$\left(f\left(0\right)\right)^{\prime \prime \prime }=1$$$
Now, use the calculated values to get a polynomial:
$$$f\left(x\right)\approx\frac{1}{0!}x^{0}+\frac{1}{1!}x^{1}+\frac{1}{2!}x^{2}+\frac{1}{3!}x^{3}$$$
Finally, after simplifying we get the final answer:
$$$f\left(x\right)\approx P\left(x\right) = 1+x+\frac{1}{2}x^{2}+\frac{1}{6}x^{3}$$$
Answer: the Taylor (Maclaurin) series of $$$e^{x}$$$ up to $$$n=3$$$ is $$$e^{x}\approx P\left(x\right)=1+x+\frac{1}{2}x^{2}+\frac{1}{6}x^{3}$$$