テイラー級数およびマクローリン級数(べき級数)計算機

テイラー級数/マクローリン級数を段階的に求める

この計算機は、手順を表示しながら、与えられた関数のテイラー(または冪)級数展開を、与えられた点のまわりで求めます。テイラー多項式の次数を指定できます。マクローリン多項式が必要な場合は、展開点を$$$0$$$に設定するだけです。

Enter a function:

Enter a point:

For Maclaurin series, set the point to `0`.

Order `n=`

Evaluate the series and find the error at the point

The point is optional.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: calculate the Taylor (Maclaurin) series of $$$\frac{1}{x}$$$ up to $$$n=5$$$

A Maclaurin series is given by $$$f\left(x\right)=\sum\limits_{k=0}^{\infty}\frac{f^{(k)}\left(a\right)}{k!}x^k$$$

In our case, $$$f\left(x\right) \approx P\left(x\right) = \sum\limits_{k=0}^{n}\frac{f^{(k)}\left(a\right)}{k!}x^k=\sum\limits_{k=0}^{5}\frac{f^{(k)}\left(a\right)}{k!}x^k$$$

So, what we need to do to get the desired polynomial is to calculate the derivatives, evaluate them at the given point, and plug the results into the given formula.

$$$f^{(0)}\left(x\right)=f\left(x\right)=\frac{1}{x}$$$

Evaluate the function at the point: as can be seen, the function does not exist at the given point.

Answer: the Taylor (Maclaurin) series can't be found at the given point.


Please try a new game Rotatly