$$$f{\left(x \right)} = x^{4} + 6 x^{3} - 3 x^{2} + 17 x - 15$$$ の根

この計算機は多項式 $$$f{\left(x \right)} = x^{4} + 6 x^{3} - 3 x^{2} + 17 x - 15$$$ のすべての根を求めることを試みます。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$x^{4} + 6 x^{3} - 3 x^{2} + 17 x - 15 = 0$$$ を解く。

解答

根:$$$- \frac{\sqrt{- \frac{53}{2 \sqrt[3]{- \frac{271}{16} + \frac{\sqrt{668949}}{16}}} + 2 \sqrt[3]{- \frac{271}{16} + \frac{\sqrt{668949}}{16}} + 11}}{2} - \frac{3}{2} + \frac{\sqrt{- 2 \sqrt[3]{- \frac{271}{16} + \frac{\sqrt{668949}}{16}} + \frac{53}{2 \sqrt[3]{- \frac{271}{16} + \frac{\sqrt{668949}}{16}}} + 22 + \frac{106}{\sqrt{- \frac{53}{2 \sqrt[3]{- \frac{271}{16} + \frac{\sqrt{668949}}{16}}} + 2 \sqrt[3]{- \frac{271}{16} + \frac{\sqrt{668949}}{16}} + 11}}}}{2}\approx 0.793705310335777$$$A、重複度:$$$1$$$A

根:$$$- \frac{\sqrt{- 2 \sqrt[3]{- \frac{271}{16} + \frac{\sqrt{668949}}{16}} + \frac{53}{2 \sqrt[3]{- \frac{271}{16} + \frac{\sqrt{668949}}{16}}} + 22 + \frac{106}{\sqrt{- \frac{53}{2 \sqrt[3]{- \frac{271}{16} + \frac{\sqrt{668949}}{16}}} + 2 \sqrt[3]{- \frac{271}{16} + \frac{\sqrt{668949}}{16}} + 11}}}}{2} - \frac{\sqrt{- \frac{53}{2 \sqrt[3]{- \frac{271}{16} + \frac{\sqrt{668949}}{16}}} + 2 \sqrt[3]{- \frac{271}{16} + \frac{\sqrt{668949}}{16}} + 11}}{2} - \frac{3}{2}\approx -6.847415492273561$$$A、重複度:$$$1$$$A

根:$$$- \frac{3}{2} + \frac{\sqrt{- \frac{53}{2 \sqrt[3]{- \frac{271}{16} + \frac{\sqrt{668949}}{16}}} + 2 \sqrt[3]{- \frac{271}{16} + \frac{\sqrt{668949}}{16}} + 11}}{2} + \frac{\sqrt{- \frac{106}{\sqrt{- \frac{53}{2 \sqrt[3]{- \frac{271}{16} + \frac{\sqrt{668949}}{16}}} + 2 \sqrt[3]{- \frac{271}{16} + \frac{\sqrt{668949}}{16}} + 11}} - 2 \sqrt[3]{- \frac{271}{16} + \frac{\sqrt{668949}}{16}} + \frac{53}{2 \sqrt[3]{- \frac{271}{16} + \frac{\sqrt{668949}}{16}}} + 22}}{2}\approx 0.026855090968892 + 1.661100453811431 i$$$A、重複度:$$$1$$$A

根:$$$- \frac{3}{2} + \frac{\sqrt{- \frac{53}{2 \sqrt[3]{- \frac{271}{16} + \frac{\sqrt{668949}}{16}}} + 2 \sqrt[3]{- \frac{271}{16} + \frac{\sqrt{668949}}{16}} + 11}}{2} - \frac{\sqrt{- \frac{106}{\sqrt{- \frac{53}{2 \sqrt[3]{- \frac{271}{16} + \frac{\sqrt{668949}}{16}}} + 2 \sqrt[3]{- \frac{271}{16} + \frac{\sqrt{668949}}{16}} + 11}} - 2 \sqrt[3]{- \frac{271}{16} + \frac{\sqrt{668949}}{16}} + \frac{53}{2 \sqrt[3]{- \frac{271}{16} + \frac{\sqrt{668949}}{16}}} + 22}}{2}\approx 0.026855090968892 - 1.661100453811431 i$$$A、重複度:$$$1$$$A


Please try a new game Rotatly