$$$32 + 4 \sqrt{17} i$$$の極形式

この計算機は、複素数 $$$32 + 4 \sqrt{17} i$$$ の極形式を手順を表示して求めます。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$32 + 4 \sqrt{17} i$$$の極形式を求めなさい。

解答

この複素数の標準形は $$$32 + 4 \sqrt{17} i$$$ です。

複素数 $$$a + b i$$$ に対して、極形式は $$$r \left(\cos{\left(\theta \right)} + i \sin{\left(\theta \right)}\right)$$$ で与えられ、ここで $$$r = \sqrt{a^{2} + b^{2}}$$$$$$\theta = \operatorname{atan}{\left(\frac{b}{a} \right)}$$$

$$$a = 32$$$$$$b = 4 \sqrt{17}$$$ が成り立つ。

したがって、$$$r = \sqrt{32^{2} + \left(4 \sqrt{17}\right)^{2}} = 36$$$

また、$$$\theta = \operatorname{atan}{\left(\frac{4 \sqrt{17}}{32} \right)} = \operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)}$$$

したがって、$$$32 + 4 \sqrt{17} i = 36 \left(\cos{\left(\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)} \right)} + i \sin{\left(\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)} \right)}\right)$$$

解答

$$$32 + 4 \sqrt{17} i = 36 \left(\cos{\left(\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)} \right)} + i \sin{\left(\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)} \right)}\right) = 36 \left(\cos{\left(\left(\frac{180 \operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)}}{\pi}\right)^{\circ} \right)} + i \sin{\left(\left(\frac{180 \operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)}}{\pi}\right)^{\circ} \right)}\right)$$$A


Please try a new game Rotatly