$$$\sqrt[3]{8}$$$ を求めよ

この計算機は、手順を示しながら複素数 $$$8$$$$$$n$$$ 次根 ($$$n = 3$$$) をすべて求めます。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\sqrt[3]{8}$$$ を求めよ。

解答

$$$8$$$ の極形式は $$$8 \left(\cos{\left(0 \right)} + i \sin{\left(0 \right)}\right)$$$ です (手順は 極形式計算機 を参照)。

ド・モアブルの公式によれば、複素数 $$$r \left(\cos{\left(\theta \right)} + i \sin{\left(\theta \right)}\right)$$$$$$n$$$ 乗根はすべて $$$r^{\frac{1}{n}} \left(\cos{\left(\frac{\theta + 2 \pi k}{n} \right)} + i \sin{\left(\frac{\theta + 2 \pi k}{n} \right)}\right)$$$, $$$k=\overline{0..n-1}$$$ で与えられる。

$$$r = 8$$$$$$\theta = 0$$$、および$$$n = 3$$$が成り立つ。

  • $$$k = 0$$$: $$$\sqrt[3]{8} \left(\cos{\left(\frac{0 + 2\cdot \pi\cdot 0}{3} \right)} + i \sin{\left(\frac{0 + 2\cdot \pi\cdot 0}{3} \right)}\right) = 2 \left(\cos{\left(0 \right)} + i \sin{\left(0 \right)}\right) = 2$$$
  • $$$k = 1$$$: $$$\sqrt[3]{8} \left(\cos{\left(\frac{0 + 2\cdot \pi\cdot 1}{3} \right)} + i \sin{\left(\frac{0 + 2\cdot \pi\cdot 1}{3} \right)}\right) = 2 \left(\cos{\left(\frac{2 \pi}{3} \right)} + i \sin{\left(\frac{2 \pi}{3} \right)}\right) = -1 + \sqrt{3} i$$$
  • $$$k = 2$$$: $$$\sqrt[3]{8} \left(\cos{\left(\frac{0 + 2\cdot \pi\cdot 2}{3} \right)} + i \sin{\left(\frac{0 + 2\cdot \pi\cdot 2}{3} \right)}\right) = 2 \left(\cos{\left(\frac{4 \pi}{3} \right)} + i \sin{\left(\frac{4 \pi}{3} \right)}\right) = -1 - \sqrt{3} i$$$

解答

$$$\sqrt[3]{8} = 2$$$A

$$$\sqrt[3]{8} = -1 + \sqrt{3} i\approx -1 + 1.732050807568877 i$$$A

$$$\sqrt[3]{8} = -1 - \sqrt{3} i\approx -1 - 1.732050807568877 i$$$A


Please try a new game Rotatly