$$$x^{4}$$$$$$x - 1$$$ で割る

この電卓は、長除法を用いて$$$x^{4}$$$$$$x - 1$$$で割り、手順を表示します。

関連する計算機: 組立除法計算機, 筆算による割り算計算機

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

筆算を用いて $$$\frac{x^{4}}{x - 1}$$$ を求めよ。

解答

問題を指定の形式で書いてください(省略された項は係数0で表します):

$$$\begin{array}{r|r}\hline\\x-1&x^{4}+0 x^{3}+0 x^{2}+0 x+0\end{array}$$$

ステップ 1

被除式の最高次の項を除式の最高次の項で割る: $$$\frac{x^{4}}{x} = x^{3}$$$

計算した結果を表の上部に記入してください。

それを除数で掛ける: $$$x^{3} \left(x-1\right) = x^{4}- x^{3}$$$.

得られた結果から被除数を減じます: $$$\left(x^{4}\right) - \left(x^{4}- x^{3}\right) = x^{3}$$$.

$$\begin{array}{r|rrrrr:c}&{\color{BlueViolet}x^{3}}&&&&&\\\hline\\{\color{Magenta}x}-1&{\color{BlueViolet}x^{4}}&+0 x^{3}&+0 x^{2}&+0 x&+0&\frac{{\color{BlueViolet}x^{4}}}{{\color{Magenta}x}} = {\color{BlueViolet}x^{3}}\\&-\phantom{x^{4}}&&&&&\\&x^{4}&- x^{3}&&&&{\color{BlueViolet}x^{3}} \left(x-1\right) = x^{4}- x^{3}\\\hline\\&&x^{3}&+0 x^{2}&+0 x&+0&\end{array}$$

ステップ 2

得られた余りの首項を除数の首項で割る: $$$\frac{x^{3}}{x} = x^{2}$$$

計算した結果を表の上部に記入してください。

それを除数で掛ける: $$$x^{2} \left(x-1\right) = x^{3}- x^{2}$$$.

得られた結果から余りを引きます: $$$\left(x^{3}\right) - \left(x^{3}- x^{2}\right) = x^{2}$$$

$$\begin{array}{r|rrrrr:c}&x^{3}&{\color{Fuchsia}+x^{2}}&&&&\\\hline\\{\color{Magenta}x}-1&x^{4}&+0 x^{3}&+0 x^{2}&+0 x&+0&\\&-\phantom{x^{4}}&&&&&\\&x^{4}&- x^{3}&&&&\\\hline\\&&{\color{Fuchsia}x^{3}}&+0 x^{2}&+0 x&+0&\frac{{\color{Fuchsia}x^{3}}}{{\color{Magenta}x}} = {\color{Fuchsia}x^{2}}\\&&-\phantom{x^{3}}&&&&\\&&x^{3}&- x^{2}&&&{\color{Fuchsia}x^{2}} \left(x-1\right) = x^{3}- x^{2}\\\hline\\&&&x^{2}&+0 x&+0&\end{array}$$

ステップ 3

得られた余りの首項を除数の首項で割る: $$$\frac{x^{2}}{x} = x$$$

計算した結果を表の上部に記入してください。

それを除数で掛ける: $$$x \left(x-1\right) = x^{2}- x$$$.

得られた結果から余りを引きます: $$$\left(x^{2}\right) - \left(x^{2}- x\right) = x$$$

$$\begin{array}{r|rrrrr:c}&x^{3}&+x^{2}&{\color{DeepPink}+x}&&&\\\hline\\{\color{Magenta}x}-1&x^{4}&+0 x^{3}&+0 x^{2}&+0 x&+0&\\&-\phantom{x^{4}}&&&&&\\&x^{4}&- x^{3}&&&&\\\hline\\&&x^{3}&+0 x^{2}&+0 x&+0&\\&&-\phantom{x^{3}}&&&&\\&&x^{3}&- x^{2}&&&\\\hline\\&&&{\color{DeepPink}x^{2}}&+0 x&+0&\frac{{\color{DeepPink}x^{2}}}{{\color{Magenta}x}} = {\color{DeepPink}x}\\&&&-\phantom{x^{2}}&&&\\&&&x^{2}&- x&&{\color{DeepPink}x} \left(x-1\right) = x^{2}- x\\\hline\\&&&&x&+0&\end{array}$$

ステップ 4

得られた余りの首項を除数の首項で割る: $$$\frac{x}{x} = 1$$$

計算した結果を表の上部に記入してください。

それを除数で掛ける: $$$1 \left(x-1\right) = x-1$$$.

得られた結果から余りを引きます: $$$\left(x\right) - \left(x-1\right) = 1$$$

$$\begin{array}{r|rrrrr:c}&x^{3}&+x^{2}&+x&{\color{Violet}+1}&&\\\hline\\{\color{Magenta}x}-1&x^{4}&+0 x^{3}&+0 x^{2}&+0 x&+0&\\&-\phantom{x^{4}}&&&&&\\&x^{4}&- x^{3}&&&&\\\hline\\&&x^{3}&+0 x^{2}&+0 x&+0&\\&&-\phantom{x^{3}}&&&&\\&&x^{3}&- x^{2}&&&\\\hline\\&&&x^{2}&+0 x&+0&\\&&&-\phantom{x^{2}}&&&\\&&&x^{2}&- x&&\\\hline\\&&&&{\color{Violet}x}&+0&\frac{{\color{Violet}x}}{{\color{Magenta}x}} = {\color{Violet}1}\\&&&&-\phantom{x}&&\\&&&&x&-1&{\color{Violet}1} \left(x-1\right) = x-1\\\hline\\&&&&&1&\end{array}$$

剰余の次数が除数の次数より小さいので、これで終了です。

結果の表をもう一度示します:

$$\begin{array}{r|rrrrr:c}&{\color{BlueViolet}x^{3}}&{\color{Fuchsia}+x^{2}}&{\color{DeepPink}+x}&{\color{Violet}+1}&&\text{ヒント}\\\hline\\{\color{Magenta}x}-1&{\color{BlueViolet}x^{4}}&+0 x^{3}&+0 x^{2}&+0 x&+0&\frac{{\color{BlueViolet}x^{4}}}{{\color{Magenta}x}} = {\color{BlueViolet}x^{3}}\\&-\phantom{x^{4}}&&&&&\\&x^{4}&- x^{3}&&&&{\color{BlueViolet}x^{3}} \left(x-1\right) = x^{4}- x^{3}\\\hline\\&&{\color{Fuchsia}x^{3}}&+0 x^{2}&+0 x&+0&\frac{{\color{Fuchsia}x^{3}}}{{\color{Magenta}x}} = {\color{Fuchsia}x^{2}}\\&&-\phantom{x^{3}}&&&&\\&&x^{3}&- x^{2}&&&{\color{Fuchsia}x^{2}} \left(x-1\right) = x^{3}- x^{2}\\\hline\\&&&{\color{DeepPink}x^{2}}&+0 x&+0&\frac{{\color{DeepPink}x^{2}}}{{\color{Magenta}x}} = {\color{DeepPink}x}\\&&&-\phantom{x^{2}}&&&\\&&&x^{2}&- x&&{\color{DeepPink}x} \left(x-1\right) = x^{2}- x\\\hline\\&&&&{\color{Violet}x}&+0&\frac{{\color{Violet}x}}{{\color{Magenta}x}} = {\color{Violet}1}\\&&&&-\phantom{x}&&\\&&&&x&-1&{\color{Violet}1} \left(x-1\right) = x-1\\\hline\\&&&&&1&\end{array}$$

したがって、$$$\frac{x^{4}}{x - 1} = \left(x^{3} + x^{2} + x + 1\right) + \frac{1}{x - 1}$$$

解答

$$$\frac{x^{4}}{x - 1} = \left(x^{3} + x^{2} + x + 1\right) + \frac{1}{x - 1}$$$A


Please try a new game Rotatly