多項式の因数分解計算機
多項式を段階的に因数分解
この計算機は、手順を表示しながら、任意の多項式(2項式、3項式、2次式など)の因数分解を試みます。使用される方法は次のとおりです:単項式の共通因数でくくる、二次式の因数分解、項のグループ化および再グループ化、和の平方・差の平方、和の立方・差の立方、平方の差、立方和・立方差、有理根の定理。計算機は一変数および多変数の多項式の両方に対応します。
Solution
Your input: factor $$$3 r^{2} + 8 r + 5$$$.
To factor the quadratic function $$$3 r^{2} + 8 r + 5$$$, we should solve the corresponding quadratic equation $$$3 r^{2} + 8 r + 5=0$$$.
Indeed, if $$$r_1$$$ and $$$r_2$$$ are the roots of the quadratic equation $$$ar^2+br+c=0$$$, then $$$ar^2+br+c=a(r-r_1)(r-r_2)$$$.
Solve the quadratic equation $$$3 r^{2} + 8 r + 5=0$$$.
The roots are $$$r_{1} = -1$$$, $$$r_{2} = - \frac{5}{3}$$$ (use the quadratic equation calculator to see the steps).
Therefore, $$$3 r^{2} + 8 r + 5 = 3 \left(r + 1\right) \left(r + \frac{5}{3}\right)$$$.
$${\color{red}{\left(3 r^{2} + 8 r + 5\right)}} = {\color{red}{\left(3 \left(r + 1\right) \left(r + \frac{5}{3}\right)\right)}}$$
Simplify: $$$3 \left(r + 1\right) \left(r + \frac{5}{3}\right)=\left(r + 1\right) \left(3 r + 5\right)$$$.
Thus, $$$3 r^{2} + 8 r + 5=\left(r + 1\right) \left(3 r + 5\right)$$$.
Answer: $$$3 r^{2} + 8 r + 5=\left(r + 1\right) \left(3 r + 5\right)$$$.