Modulo di $$$\left\langle 4 \cos{\left(2 t \right)}, - 4 \sin{\left(2 t \right)}, -8\right\rangle$$$

La calcolatrice troverà il modulo (lunghezza, norma) del vettore $$$\left\langle 4 \cos{\left(2 t \right)}, - 4 \sin{\left(2 t \right)}, -8\right\rangle$$$, mostrando i passaggi.
$$$\langle$$$ $$$\rangle$$$
Separati da virgola.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova il modulo (lunghezza) di $$$\mathbf{\vec{u}} = \left\langle 4 \cos{\left(2 t \right)}, - 4 \sin{\left(2 t \right)}, -8\right\rangle$$$.

Soluzione

Il modulo di un vettore è dato dalla formula $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{\sum_{i=1}^{n} \left|{u_{i}}\right|^{2}}$$$.

La somma dei quadrati dei moduli delle coordinate è $$$\left|{4 \cos{\left(2 t \right)}}\right|^{2} + \left|{- 4 \sin{\left(2 t \right)}}\right|^{2} + \left|{-8}\right|^{2} = 16 \sin^{2}{\left(2 t \right)} + 16 \cos^{2}{\left(2 t \right)} + 64.$$$

Pertanto, il modulo del vettore è $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{16 \sin^{2}{\left(2 t \right)} + 16 \cos^{2}{\left(2 t \right)} + 64} = 4 \sqrt{5}.$$$

Risposta

Il modulo è $$$4 \sqrt{5}\approx 8.944271909999159$$$A.


Please try a new game Rotatly