Modulo di $$$\left\langle - \frac{\sin{\left(t \right)}}{3}, - \frac{\cos{\left(t \right)}}{3}, 0\right\rangle$$$

La calcolatrice troverà il modulo (lunghezza, norma) del vettore $$$\left\langle - \frac{\sin{\left(t \right)}}{3}, - \frac{\cos{\left(t \right)}}{3}, 0\right\rangle$$$, mostrando i passaggi.
$$$\langle$$$ $$$\rangle$$$
Separati da virgola.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova il modulo (lunghezza) di $$$\mathbf{\vec{u}} = \left\langle - \frac{\sin{\left(t \right)}}{3}, - \frac{\cos{\left(t \right)}}{3}, 0\right\rangle$$$.

Soluzione

Il modulo di un vettore è dato dalla formula $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{\sum_{i=1}^{n} \left|{u_{i}}\right|^{2}}$$$.

La somma dei quadrati dei moduli delle coordinate è $$$\left|{- \frac{\sin{\left(t \right)}}{3}}\right|^{2} + \left|{- \frac{\cos{\left(t \right)}}{3}}\right|^{2} + \left|{0}\right|^{2} = \frac{\sin^{2}{\left(t \right)}}{9} + \frac{\cos^{2}{\left(t \right)}}{9}$$$.

Pertanto, il modulo del vettore è $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{\frac{\sin^{2}{\left(t \right)}}{9} + \frac{\cos^{2}{\left(t \right)}}{9}} = \frac{1}{3}$$$.

Risposta

Il modulo è $$$\frac{1}{3}\approx 0.333333333333333$$$A.


Please try a new game Rotatly