Integrale di $$$- 3 \sqrt{6} \sqrt{x} - x^{2} + x z^{2}$$$ rispetto a $$$x$$$

Il calcolatore troverà l'integrale/antiderivata di $$$- 3 \sqrt{6} \sqrt{x} - x^{2} + x z^{2}$$$ rispetto a $$$x$$$, con i passaggi mostrati.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \left(- 3 \sqrt{6} \sqrt{x} - x^{2} + x z^{2}\right)\, dx$$$.

Soluzione

Integra termine per termine:

$${\color{red}{\int{\left(- 3 \sqrt{6} \sqrt{x} - x^{2} + x z^{2}\right)d x}}} = {\color{red}{\left(- \int{x^{2} d x} - \int{3 \sqrt{6} \sqrt{x} d x} + \int{x z^{2} d x}\right)}}$$

Applica la regola della potenza $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=2$$$:

$$- \int{3 \sqrt{6} \sqrt{x} d x} + \int{x z^{2} d x} - {\color{red}{\int{x^{2} d x}}}=- \int{3 \sqrt{6} \sqrt{x} d x} + \int{x z^{2} d x} - {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=- \int{3 \sqrt{6} \sqrt{x} d x} + \int{x z^{2} d x} - {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$

Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=z^{2}$$$ e $$$f{\left(x \right)} = x$$$:

$$- \frac{x^{3}}{3} - \int{3 \sqrt{6} \sqrt{x} d x} + {\color{red}{\int{x z^{2} d x}}} = - \frac{x^{3}}{3} - \int{3 \sqrt{6} \sqrt{x} d x} + {\color{red}{z^{2} \int{x d x}}}$$

Applica la regola della potenza $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=1$$$:

$$- \frac{x^{3}}{3} + z^{2} {\color{red}{\int{x d x}}} - \int{3 \sqrt{6} \sqrt{x} d x}=- \frac{x^{3}}{3} + z^{2} {\color{red}{\frac{x^{1 + 1}}{1 + 1}}} - \int{3 \sqrt{6} \sqrt{x} d x}=- \frac{x^{3}}{3} + z^{2} {\color{red}{\left(\frac{x^{2}}{2}\right)}} - \int{3 \sqrt{6} \sqrt{x} d x}$$

Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=3 \sqrt{6}$$$ e $$$f{\left(x \right)} = \sqrt{x}$$$:

$$- \frac{x^{3}}{3} + \frac{x^{2} z^{2}}{2} - {\color{red}{\int{3 \sqrt{6} \sqrt{x} d x}}} = - \frac{x^{3}}{3} + \frac{x^{2} z^{2}}{2} - {\color{red}{\left(3 \sqrt{6} \int{\sqrt{x} d x}\right)}}$$

Applica la regola della potenza $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=\frac{1}{2}$$$:

$$- \frac{x^{3}}{3} + \frac{x^{2} z^{2}}{2} - 3 \sqrt{6} {\color{red}{\int{\sqrt{x} d x}}}=- \frac{x^{3}}{3} + \frac{x^{2} z^{2}}{2} - 3 \sqrt{6} {\color{red}{\int{x^{\frac{1}{2}} d x}}}=- \frac{x^{3}}{3} + \frac{x^{2} z^{2}}{2} - 3 \sqrt{6} {\color{red}{\frac{x^{\frac{1}{2} + 1}}{\frac{1}{2} + 1}}}=- \frac{x^{3}}{3} + \frac{x^{2} z^{2}}{2} - 3 \sqrt{6} {\color{red}{\left(\frac{2 x^{\frac{3}{2}}}{3}\right)}}$$

Pertanto,

$$\int{\left(- 3 \sqrt{6} \sqrt{x} - x^{2} + x z^{2}\right)d x} = - 2 \sqrt{6} x^{\frac{3}{2}} - \frac{x^{3}}{3} + \frac{x^{2} z^{2}}{2}$$

Aggiungi la costante di integrazione:

$$\int{\left(- 3 \sqrt{6} \sqrt{x} - x^{2} + x z^{2}\right)d x} = - 2 \sqrt{6} x^{\frac{3}{2}} - \frac{x^{3}}{3} + \frac{x^{2} z^{2}}{2}+C$$

Risposta

$$$\int \left(- 3 \sqrt{6} \sqrt{x} - x^{2} + x z^{2}\right)\, dx = \left(- 2 \sqrt{6} x^{\frac{3}{2}} - \frac{x^{3}}{3} + \frac{x^{2} z^{2}}{2}\right) + C$$$A


Please try a new game Rotatly