Integrale di $$$\frac{x^{2}}{7 - x^{3}}$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \frac{x^{2}}{7 - x^{3}}\, dx$$$.
Soluzione
Sia $$$u=7 - x^{3}$$$.
Quindi $$$du=\left(7 - x^{3}\right)^{\prime }dx = - 3 x^{2} dx$$$ (i passaggi si possono vedere »), e si ha che $$$x^{2} dx = - \frac{du}{3}$$$.
Pertanto,
$${\color{red}{\int{\frac{x^{2}}{7 - x^{3}} d x}}} = {\color{red}{\int{\left(- \frac{1}{3 u}\right)d u}}}$$
Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=- \frac{1}{3}$$$ e $$$f{\left(u \right)} = \frac{1}{u}$$$:
$${\color{red}{\int{\left(- \frac{1}{3 u}\right)d u}}} = {\color{red}{\left(- \frac{\int{\frac{1}{u} d u}}{3}\right)}}$$
L'integrale di $$$\frac{1}{u}$$$ è $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{3} = - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{3}$$
Ricordiamo che $$$u=7 - x^{3}$$$:
$$- \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{3} = - \frac{\ln{\left(\left|{{\color{red}{\left(7 - x^{3}\right)}}}\right| \right)}}{3}$$
Pertanto,
$$\int{\frac{x^{2}}{7 - x^{3}} d x} = - \frac{\ln{\left(\left|{x^{3} - 7}\right| \right)}}{3}$$
Aggiungi la costante di integrazione:
$$\int{\frac{x^{2}}{7 - x^{3}} d x} = - \frac{\ln{\left(\left|{x^{3} - 7}\right| \right)}}{3}+C$$
Risposta
$$$\int \frac{x^{2}}{7 - x^{3}}\, dx = - \frac{\ln\left(\left|{x^{3} - 7}\right|\right)}{3} + C$$$A