Integrale di $$$t^{2} x - t^{2} y$$$ rispetto a $$$x$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \left(t^{2} x - t^{2} y\right)\, dx$$$.
Soluzione
Integra termine per termine:
$${\color{red}{\int{\left(t^{2} x - t^{2} y\right)d x}}} = {\color{red}{\left(\int{t^{2} x d x} - \int{t^{2} y d x}\right)}}$$
Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=t^{2}$$$ e $$$f{\left(x \right)} = x$$$:
$$- \int{t^{2} y d x} + {\color{red}{\int{t^{2} x d x}}} = - \int{t^{2} y d x} + {\color{red}{t^{2} \int{x d x}}}$$
Applica la regola della potenza $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=1$$$:
$$t^{2} {\color{red}{\int{x d x}}} - \int{t^{2} y d x}=t^{2} {\color{red}{\frac{x^{1 + 1}}{1 + 1}}} - \int{t^{2} y d x}=t^{2} {\color{red}{\left(\frac{x^{2}}{2}\right)}} - \int{t^{2} y d x}$$
Applica la regola della costante $$$\int c\, dx = c x$$$ con $$$c=t^{2} y$$$:
$$\frac{t^{2} x^{2}}{2} - {\color{red}{\int{t^{2} y d x}}} = \frac{t^{2} x^{2}}{2} - {\color{red}{t^{2} x y}}$$
Pertanto,
$$\int{\left(t^{2} x - t^{2} y\right)d x} = \frac{t^{2} x^{2}}{2} - t^{2} x y$$
Semplifica:
$$\int{\left(t^{2} x - t^{2} y\right)d x} = \frac{t^{2} x \left(x - 2 y\right)}{2}$$
Aggiungi la costante di integrazione:
$$\int{\left(t^{2} x - t^{2} y\right)d x} = \frac{t^{2} x \left(x - 2 y\right)}{2}+C$$
Risposta
$$$\int \left(t^{2} x - t^{2} y\right)\, dx = \frac{t^{2} x \left(x - 2 y\right)}{2} + C$$$A