Integrale di $$$\sin^{5}{\left(x \right)}$$$

La calcolatrice troverà l'integrale/primitiva di $$$\sin^{5}{\left(x \right)}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \sin^{5}{\left(x \right)}\, dx$$$.

Soluzione

Metti in evidenza un seno e scrivi tutto il resto in funzione del coseno, usando la formula $$$\sin^2\left(\alpha \right)=-\cos^2\left(\alpha \right)+1$$$ con $$$\alpha=x$$$:

$${\color{red}{\int{\sin^{5}{\left(x \right)} d x}}} = {\color{red}{\int{\left(1 - \cos^{2}{\left(x \right)}\right)^{2} \sin{\left(x \right)} d x}}}$$

Sia $$$u=\cos{\left(x \right)}$$$.

Quindi $$$du=\left(\cos{\left(x \right)}\right)^{\prime }dx = - \sin{\left(x \right)} dx$$$ (i passaggi si possono vedere »), e si ha che $$$\sin{\left(x \right)} dx = - du$$$.

Quindi,

$${\color{red}{\int{\left(1 - \cos^{2}{\left(x \right)}\right)^{2} \sin{\left(x \right)} d x}}} = {\color{red}{\int{\left(- \left(1 - u^{2}\right)^{2}\right)d u}}}$$

Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=-1$$$ e $$$f{\left(u \right)} = \left(1 - u^{2}\right)^{2}$$$:

$${\color{red}{\int{\left(- \left(1 - u^{2}\right)^{2}\right)d u}}} = {\color{red}{\left(- \int{\left(1 - u^{2}\right)^{2} d u}\right)}}$$

Expand the expression:

$$- {\color{red}{\int{\left(1 - u^{2}\right)^{2} d u}}} = - {\color{red}{\int{\left(u^{4} - 2 u^{2} + 1\right)d u}}}$$

Integra termine per termine:

$$- {\color{red}{\int{\left(u^{4} - 2 u^{2} + 1\right)d u}}} = - {\color{red}{\left(\int{1 d u} - \int{2 u^{2} d u} + \int{u^{4} d u}\right)}}$$

Applica la regola della costante $$$\int c\, du = c u$$$ con $$$c=1$$$:

$$\int{2 u^{2} d u} - \int{u^{4} d u} - {\color{red}{\int{1 d u}}} = \int{2 u^{2} d u} - \int{u^{4} d u} - {\color{red}{u}}$$

Applica la regola della potenza $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=4$$$:

$$- u + \int{2 u^{2} d u} - {\color{red}{\int{u^{4} d u}}}=- u + \int{2 u^{2} d u} - {\color{red}{\frac{u^{1 + 4}}{1 + 4}}}=- u + \int{2 u^{2} d u} - {\color{red}{\left(\frac{u^{5}}{5}\right)}}$$

Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=2$$$ e $$$f{\left(u \right)} = u^{2}$$$:

$$- \frac{u^{5}}{5} - u + {\color{red}{\int{2 u^{2} d u}}} = - \frac{u^{5}}{5} - u + {\color{red}{\left(2 \int{u^{2} d u}\right)}}$$

Applica la regola della potenza $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=2$$$:

$$- \frac{u^{5}}{5} - u + 2 {\color{red}{\int{u^{2} d u}}}=- \frac{u^{5}}{5} - u + 2 {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=- \frac{u^{5}}{5} - u + 2 {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$

Ricordiamo che $$$u=\cos{\left(x \right)}$$$:

$$- {\color{red}{u}} + \frac{2 {\color{red}{u}}^{3}}{3} - \frac{{\color{red}{u}}^{5}}{5} = - {\color{red}{\cos{\left(x \right)}}} + \frac{2 {\color{red}{\cos{\left(x \right)}}}^{3}}{3} - \frac{{\color{red}{\cos{\left(x \right)}}}^{5}}{5}$$

Pertanto,

$$\int{\sin^{5}{\left(x \right)} d x} = - \frac{\cos^{5}{\left(x \right)}}{5} + \frac{2 \cos^{3}{\left(x \right)}}{3} - \cos{\left(x \right)}$$

Aggiungi la costante di integrazione:

$$\int{\sin^{5}{\left(x \right)} d x} = - \frac{\cos^{5}{\left(x \right)}}{5} + \frac{2 \cos^{3}{\left(x \right)}}{3} - \cos{\left(x \right)}+C$$

Risposta

$$$\int \sin^{5}{\left(x \right)}\, dx = \left(- \frac{\cos^{5}{\left(x \right)}}{5} + \frac{2 \cos^{3}{\left(x \right)}}{3} - \cos{\left(x \right)}\right) + C$$$A


Please try a new game Rotatly