Integrale di $$$\sin{\left(x \right)} - \frac{1}{x}$$$

La calcolatrice troverà l'integrale/primitiva di $$$\sin{\left(x \right)} - \frac{1}{x}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \left(\sin{\left(x \right)} - \frac{1}{x}\right)\, dx$$$.

Soluzione

Integra termine per termine:

$${\color{red}{\int{\left(\sin{\left(x \right)} - \frac{1}{x}\right)d x}}} = {\color{red}{\left(- \int{\frac{1}{x} d x} + \int{\sin{\left(x \right)} d x}\right)}}$$

L'integrale di $$$\frac{1}{x}$$$ è $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:

$$\int{\sin{\left(x \right)} d x} - {\color{red}{\int{\frac{1}{x} d x}}} = \int{\sin{\left(x \right)} d x} - {\color{red}{\ln{\left(\left|{x}\right| \right)}}}$$

L'integrale del seno è $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:

$$- \ln{\left(\left|{x}\right| \right)} + {\color{red}{\int{\sin{\left(x \right)} d x}}} = - \ln{\left(\left|{x}\right| \right)} + {\color{red}{\left(- \cos{\left(x \right)}\right)}}$$

Pertanto,

$$\int{\left(\sin{\left(x \right)} - \frac{1}{x}\right)d x} = - \ln{\left(\left|{x}\right| \right)} - \cos{\left(x \right)}$$

Aggiungi la costante di integrazione:

$$\int{\left(\sin{\left(x \right)} - \frac{1}{x}\right)d x} = - \ln{\left(\left|{x}\right| \right)} - \cos{\left(x \right)}+C$$

Risposta

$$$\int \left(\sin{\left(x \right)} - \frac{1}{x}\right)\, dx = \left(- \ln\left(\left|{x}\right|\right) - \cos{\left(x \right)}\right) + C$$$A


Please try a new game Rotatly