Integrale di $$$\sec^{5}{\left(x \right)}$$$

La calcolatrice troverà l'integrale/primitiva di $$$\sec^{5}{\left(x \right)}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \sec^{5}{\left(x \right)}\, dx$$$.

Soluzione

Per l'integrale $$$\int{\sec^{5}{\left(x \right)} d x}$$$, usa l'integrazione per parti $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Siano $$$\operatorname{u}=\sec^{3}{\left(x \right)}$$$ e $$$\operatorname{dv}=\sec^{2}{\left(x \right)} dx$$$.

Quindi $$$\operatorname{du}=\left(\sec^{3}{\left(x \right)}\right)^{\prime }dx=3 \tan{\left(x \right)} \sec^{3}{\left(x \right)} dx$$$ (i passaggi si possono vedere ») e $$$\operatorname{v}=\int{\sec^{2}{\left(x \right)} d x}=\tan{\left(x \right)}$$$ (i passaggi si possono vedere »).

L'integrale può essere riscritto come

$$\int{\sec^{5}{\left(x \right)} d x}=\sec^{3}{\left(x \right)} \cdot \tan{\left(x \right)}-\int{\tan{\left(x \right)} \cdot 3 \tan{\left(x \right)} \sec^{3}{\left(x \right)} d x}=\tan{\left(x \right)} \sec^{3}{\left(x \right)} - \int{3 \tan^{2}{\left(x \right)} \sec^{3}{\left(x \right)} d x}$$

Estrai la costante:

$$\tan{\left(x \right)} \sec^{3}{\left(x \right)} - \int{3 \tan^{2}{\left(x \right)} \sec^{3}{\left(x \right)} d x}=\tan{\left(x \right)} \sec^{3}{\left(x \right)} - 3 \int{\tan^{2}{\left(x \right)} \sec^{3}{\left(x \right)} d x}$$

Applica la formula $$$\tan^{2}{\left(x \right)} = \sec^{2}{\left(x \right)} - 1$$$:

$$\tan{\left(x \right)} \sec^{3}{\left(x \right)} - 3 \int{\tan^{2}{\left(x \right)} \sec^{3}{\left(x \right)} d x}=\tan{\left(x \right)} \sec^{3}{\left(x \right)} - 3 \int{\left(\sec^{2}{\left(x \right)} - 1\right) \sec^{3}{\left(x \right)} d x}$$

Sviluppa:

$$\tan{\left(x \right)} \sec^{3}{\left(x \right)} - 3 \int{\left(\sec^{2}{\left(x \right)} - 1\right) \sec^{3}{\left(x \right)} d x}=\tan{\left(x \right)} \sec^{3}{\left(x \right)} - 3 \int{\left(\sec^{5}{\left(x \right)} - \sec^{3}{\left(x \right)}\right)d x}$$

L'integrale di una differenza è la differenza degli integrali:

$$\tan{\left(x \right)} \sec^{3}{\left(x \right)} - 3 \int{\left(\sec^{5}{\left(x \right)} - \sec^{3}{\left(x \right)}\right)d x}=\tan{\left(x \right)} \sec^{3}{\left(x \right)} + 3 \int{\sec^{3}{\left(x \right)} d x} - 3 \int{\sec^{5}{\left(x \right)} d x}$$

Pertanto, otteniamo la seguente semplice equazione lineare per l'integrale:

$${\color{red}{\int{\sec^{5}{\left(x \right)} d x}}}=\tan{\left(x \right)} \sec^{3}{\left(x \right)} + 3 \int{\sec^{3}{\left(x \right)} d x} - 3 {\color{red}{\int{\sec^{5}{\left(x \right)} d x}}}$$

Risolvendo, si ottiene che

$$\int{\sec^{5}{\left(x \right)} d x}=\frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \int{\sec^{3}{\left(x \right)} d x}}{4}$$

Per l'integrale $$$\int{\sec^{3}{\left(x \right)} d x}$$$, usa l'integrazione per parti $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Siano $$$\operatorname{u}=\sec{\left(x \right)}$$$ e $$$\operatorname{dv}=\sec^{2}{\left(x \right)} dx$$$.

Quindi $$$\operatorname{du}=\left(\sec{\left(x \right)}\right)^{\prime }dx=\tan{\left(x \right)} \sec{\left(x \right)} dx$$$ (i passaggi si possono vedere ») e $$$\operatorname{v}=\int{\sec^{2}{\left(x \right)} d x}=\tan{\left(x \right)}$$$ (i passaggi si possono vedere »).

Pertanto,

$$\int{\sec^{3}{\left(x \right)} d x}=\sec{\left(x \right)} \cdot \tan{\left(x \right)}-\int{\tan{\left(x \right)} \cdot \tan{\left(x \right)} \sec{\left(x \right)} d x}=\tan{\left(x \right)} \sec{\left(x \right)} - \int{\tan^{2}{\left(x \right)} \sec{\left(x \right)} d x}$$

Applica la formula $$$\tan^{2}{\left(x \right)} = \sec^{2}{\left(x \right)} - 1$$$:

$$\tan{\left(x \right)} \sec{\left(x \right)} - \int{\tan^{2}{\left(x \right)} \sec{\left(x \right)} d x}=\tan{\left(x \right)} \sec{\left(x \right)} - \int{\left(\sec^{2}{\left(x \right)} - 1\right) \sec{\left(x \right)} d x}$$

Sviluppa:

$$\tan{\left(x \right)} \sec{\left(x \right)} - \int{\left(\sec^{2}{\left(x \right)} - 1\right) \sec{\left(x \right)} d x}=\tan{\left(x \right)} \sec{\left(x \right)} - \int{\left(\sec^{3}{\left(x \right)} - \sec{\left(x \right)}\right)d x}$$

L'integrale di una differenza è la differenza degli integrali:

$$\tan{\left(x \right)} \sec{\left(x \right)} - \int{\left(\sec^{3}{\left(x \right)} - \sec{\left(x \right)}\right)d x}=\tan{\left(x \right)} \sec{\left(x \right)} + \int{\sec{\left(x \right)} d x} - \int{\sec^{3}{\left(x \right)} d x}$$

Pertanto, otteniamo la seguente semplice equazione lineare per l'integrale:

$${\color{red}{\int{\sec^{3}{\left(x \right)} d x}}}=\tan{\left(x \right)} \sec{\left(x \right)} + \int{\sec{\left(x \right)} d x} - {\color{red}{\int{\sec^{3}{\left(x \right)} d x}}}$$

Risolvendo, si ottiene che

$$\int{\sec^{3}{\left(x \right)} d x}=\frac{\tan{\left(x \right)} \sec{\left(x \right)}}{2} + \frac{\int{\sec{\left(x \right)} d x}}{2}$$

Pertanto,

$$\frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 {\color{red}{\int{\sec^{3}{\left(x \right)} d x}}}}{4} = \frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 {\color{red}{\left(\frac{\tan{\left(x \right)} \sec{\left(x \right)}}{2} + \frac{\int{\sec{\left(x \right)} d x}}{2}\right)}}}{4}$$

Riscrivi la secante come $$$\sec\left(x\right)=\frac{1}{\cos\left(x\right)}$$$:

$$\frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8} + \frac{3 {\color{red}{\int{\sec{\left(x \right)} d x}}}}{8} = \frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8} + \frac{3 {\color{red}{\int{\frac{1}{\cos{\left(x \right)}} d x}}}}{8}$$

Riescrivi il coseno in termini del seno usando la formula $$$\cos\left(x\right)=\sin\left(x + \frac{\pi}{2}\right)$$$ e poi riscrivi il seno usando la formula dell’angolo doppio $$$\sin\left(x\right)=2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)$$$:

$$\frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8} + \frac{3 {\color{red}{\int{\frac{1}{\cos{\left(x \right)}} d x}}}}{8} = \frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8} + \frac{3 {\color{red}{\int{\frac{1}{2 \sin{\left(\frac{x}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{x}{2} + \frac{\pi}{4} \right)}} d x}}}}{8}$$

Moltiplica il numeratore e il denominatore per $$$\sec^2\left(\frac{x}{2} + \frac{\pi}{4} \right)$$$:

$$\frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8} + \frac{3 {\color{red}{\int{\frac{1}{2 \sin{\left(\frac{x}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{x}{2} + \frac{\pi}{4} \right)}} d x}}}}{8} = \frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8} + \frac{3 {\color{red}{\int{\frac{\sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}} d x}}}}{8}$$

Sia $$$u=\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}$$$.

Quindi $$$du=\left(\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}\right)^{\prime }dx = \frac{\sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}{2} dx$$$ (i passaggi si possono vedere »), e si ha che $$$\sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)} dx = 2 du$$$.

Quindi,

$$\frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8} + \frac{3 {\color{red}{\int{\frac{\sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}} d x}}}}{8} = \frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8} + \frac{3 {\color{red}{\int{\frac{1}{u} d u}}}}{8}$$

L'integrale di $$$\frac{1}{u}$$$ è $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$\frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8} + \frac{3 {\color{red}{\int{\frac{1}{u} d u}}}}{8} = \frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8} + \frac{3 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{8}$$

Ricordiamo che $$$u=\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}$$$:

$$\frac{3 \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{8} + \frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8} = \frac{3 \ln{\left(\left|{{\color{red}{\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}}}\right| \right)}}{8} + \frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8}$$

Pertanto,

$$\int{\sec^{5}{\left(x \right)} d x} = \frac{3 \ln{\left(\left|{\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}\right| \right)}}{8} + \frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8}$$

Aggiungi la costante di integrazione:

$$\int{\sec^{5}{\left(x \right)} d x} = \frac{3 \ln{\left(\left|{\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}\right| \right)}}{8} + \frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8}+C$$

Risposta

$$$\int \sec^{5}{\left(x \right)}\, dx = \left(\frac{3 \ln\left(\left|{\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}\right|\right)}{8} + \frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8}\right) + C$$$A


Please try a new game Rotatly