Integrale di $$$\omega t \cos{\left(2 \right)}$$$ rispetto a $$$t$$$

Il calcolatore troverà l'integrale/antiderivata di $$$\omega t \cos{\left(2 \right)}$$$ rispetto a $$$t$$$, con i passaggi mostrati.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \omega t \cos{\left(2 \right)}\, dt$$$.

Le funzioni trigonometriche si aspettano l'argomento in radianti. Per inserire l'argomento in gradi, moltiplicalo per pi/180, ad esempio scrivi 45° come 45*pi/180, oppure usa la funzione appropriata aggiungendo 'd', ad esempio scrivi sin(45°) come sind(45).

Soluzione

Applica la regola del fattore costante $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ con $$$c=\omega \cos{\left(2 \right)}$$$ e $$$f{\left(t \right)} = t$$$:

$${\color{red}{\int{\omega t \cos{\left(2 \right)} d t}}} = {\color{red}{\omega \cos{\left(2 \right)} \int{t d t}}}$$

Applica la regola della potenza $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=1$$$:

$$\omega \cos{\left(2 \right)} {\color{red}{\int{t d t}}}=\omega \cos{\left(2 \right)} {\color{red}{\frac{t^{1 + 1}}{1 + 1}}}=\omega \cos{\left(2 \right)} {\color{red}{\left(\frac{t^{2}}{2}\right)}}$$

Pertanto,

$$\int{\omega t \cos{\left(2 \right)} d t} = \frac{\omega t^{2} \cos{\left(2 \right)}}{2}$$

Aggiungi la costante di integrazione:

$$\int{\omega t \cos{\left(2 \right)} d t} = \frac{\omega t^{2} \cos{\left(2 \right)}}{2}+C$$

Risposta

$$$\int \omega t \cos{\left(2 \right)}\, dt = \frac{\omega t^{2} \cos{\left(2 \right)}}{2} + C$$$A


Please try a new game Rotatly