Integrale di $$$b^{x - 1}$$$ rispetto a $$$x$$$

Il calcolatore troverà l'integrale/antiderivata di $$$b^{x - 1}$$$ rispetto a $$$x$$$, con i passaggi mostrati.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int b^{x - 1}\, dx$$$.

Soluzione

Sia $$$u=x - 1$$$.

Quindi $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (i passaggi si possono vedere »), e si ha che $$$dx = du$$$.

L'integrale diventa

$${\color{red}{\int{b^{x - 1} d x}}} = {\color{red}{\int{b^{u} d u}}}$$

Apply the exponential rule $$$\int{a^{u} d u} = \frac{a^{u}}{\ln{\left(a \right)}}$$$ with $$$a=b$$$:

$${\color{red}{\int{b^{u} d u}}} = {\color{red}{\frac{b^{u}}{\ln{\left(b \right)}}}}$$

Ricordiamo che $$$u=x - 1$$$:

$$\frac{b^{{\color{red}{u}}}}{\ln{\left(b \right)}} = \frac{b^{{\color{red}{\left(x - 1\right)}}}}{\ln{\left(b \right)}}$$

Pertanto,

$$\int{b^{x - 1} d x} = \frac{b^{x - 1}}{\ln{\left(b \right)}}$$

Aggiungi la costante di integrazione:

$$\int{b^{x - 1} d x} = \frac{b^{x - 1}}{\ln{\left(b \right)}}+C$$

Risposta

$$$\int b^{x - 1}\, dx = \frac{b^{x - 1}}{\ln\left(b\right)} + C$$$A


Please try a new game Rotatly