Integrale di $$$9 i n t \sin{\left(x \right)} \cot{\left(x \right)} \csc{\left(x \right)}$$$ rispetto a $$$x$$$

Il calcolatore troverà l'integrale/antiderivata di $$$9 i n t \sin{\left(x \right)} \cot{\left(x \right)} \csc{\left(x \right)}$$$ rispetto a $$$x$$$, con i passaggi mostrati.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int 9 i n t \sin{\left(x \right)} \cot{\left(x \right)} \csc{\left(x \right)}\, dx$$$.

Soluzione

Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=9 i n t$$$ e $$$f{\left(x \right)} = \sin{\left(x \right)} \cot{\left(x \right)} \csc{\left(x \right)}$$$:

$${\color{red}{\int{9 i n t \sin{\left(x \right)} \cot{\left(x \right)} \csc{\left(x \right)} d x}}} = {\color{red}{\left(9 i n t \int{\sin{\left(x \right)} \cot{\left(x \right)} \csc{\left(x \right)} d x}\right)}}$$

Riscrivi l'integrando:

$$9 i n t {\color{red}{\int{\sin{\left(x \right)} \cot{\left(x \right)} \csc{\left(x \right)} d x}}} = 9 i n t {\color{red}{\int{\frac{\cos{\left(x \right)}}{\sin{\left(x \right)}} d x}}}$$

Sia $$$u=\sin{\left(x \right)}$$$.

Quindi $$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$ (i passaggi si possono vedere »), e si ha che $$$\cos{\left(x \right)} dx = du$$$.

L'integrale può essere riscritto come

$$9 i n t {\color{red}{\int{\frac{\cos{\left(x \right)}}{\sin{\left(x \right)}} d x}}} = 9 i n t {\color{red}{\int{\frac{1}{u} d u}}}$$

L'integrale di $$$\frac{1}{u}$$$ è $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$9 i n t {\color{red}{\int{\frac{1}{u} d u}}} = 9 i n t {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

Ricordiamo che $$$u=\sin{\left(x \right)}$$$:

$$9 i n t \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = 9 i n t \ln{\left(\left|{{\color{red}{\sin{\left(x \right)}}}}\right| \right)}$$

Pertanto,

$$\int{9 i n t \sin{\left(x \right)} \cot{\left(x \right)} \csc{\left(x \right)} d x} = 9 i n t \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)}$$

Aggiungi la costante di integrazione:

$$\int{9 i n t \sin{\left(x \right)} \cot{\left(x \right)} \csc{\left(x \right)} d x} = 9 i n t \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)}+C$$

Risposta

$$$\int 9 i n t \sin{\left(x \right)} \cot{\left(x \right)} \csc{\left(x \right)}\, dx = 9 i n t \ln\left(\left|{\sin{\left(x \right)}}\right|\right) + C$$$A


Please try a new game Rotatly