Integrale di $$$\frac{7 x}{12} - 6$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \left(\frac{7 x}{12} - 6\right)\, dx$$$.
Soluzione
Integra termine per termine:
$${\color{red}{\int{\left(\frac{7 x}{12} - 6\right)d x}}} = {\color{red}{\left(- \int{6 d x} + \int{\frac{7 x}{12} d x}\right)}}$$
Applica la regola della costante $$$\int c\, dx = c x$$$ con $$$c=6$$$:
$$\int{\frac{7 x}{12} d x} - {\color{red}{\int{6 d x}}} = \int{\frac{7 x}{12} d x} - {\color{red}{\left(6 x\right)}}$$
Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{7}{12}$$$ e $$$f{\left(x \right)} = x$$$:
$$- 6 x + {\color{red}{\int{\frac{7 x}{12} d x}}} = - 6 x + {\color{red}{\left(\frac{7 \int{x d x}}{12}\right)}}$$
Applica la regola della potenza $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=1$$$:
$$- 6 x + \frac{7 {\color{red}{\int{x d x}}}}{12}=- 6 x + \frac{7 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}}{12}=- 6 x + \frac{7 {\color{red}{\left(\frac{x^{2}}{2}\right)}}}{12}$$
Pertanto,
$$\int{\left(\frac{7 x}{12} - 6\right)d x} = \frac{7 x^{2}}{24} - 6 x$$
Semplifica:
$$\int{\left(\frac{7 x}{12} - 6\right)d x} = \frac{x \left(7 x - 144\right)}{24}$$
Aggiungi la costante di integrazione:
$$\int{\left(\frac{7 x}{12} - 6\right)d x} = \frac{x \left(7 x - 144\right)}{24}+C$$
Risposta
$$$\int \left(\frac{7 x}{12} - 6\right)\, dx = \frac{x \left(7 x - 144\right)}{24} + C$$$A