Integrale di $$$2 \sin{\left(2 t \right)}$$$

La calcolatrice troverà l'integrale/primitiva di $$$2 \sin{\left(2 t \right)}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int 2 \sin{\left(2 t \right)}\, dt$$$.

Soluzione

Applica la regola del fattore costante $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ con $$$c=2$$$ e $$$f{\left(t \right)} = \sin{\left(2 t \right)}$$$:

$${\color{red}{\int{2 \sin{\left(2 t \right)} d t}}} = {\color{red}{\left(2 \int{\sin{\left(2 t \right)} d t}\right)}}$$

Sia $$$u=2 t$$$.

Quindi $$$du=\left(2 t\right)^{\prime }dt = 2 dt$$$ (i passaggi si possono vedere »), e si ha che $$$dt = \frac{du}{2}$$$.

Quindi,

$$2 {\color{red}{\int{\sin{\left(2 t \right)} d t}}} = 2 {\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}$$

Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{2}$$$ e $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:

$$2 {\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}} = 2 {\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{2}\right)}}$$

L'integrale del seno è $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:

$${\color{red}{\int{\sin{\left(u \right)} d u}}} = {\color{red}{\left(- \cos{\left(u \right)}\right)}}$$

Ricordiamo che $$$u=2 t$$$:

$$- \cos{\left({\color{red}{u}} \right)} = - \cos{\left({\color{red}{\left(2 t\right)}} \right)}$$

Pertanto,

$$\int{2 \sin{\left(2 t \right)} d t} = - \cos{\left(2 t \right)}$$

Aggiungi la costante di integrazione:

$$\int{2 \sin{\left(2 t \right)} d t} = - \cos{\left(2 t \right)}+C$$

Risposta

$$$\int 2 \sin{\left(2 t \right)}\, dt = - \cos{\left(2 t \right)} + C$$$A


Please try a new game Rotatly