Integrale di $$$\frac{1}{\ln\left(n^{3}\right)}$$$

La calcolatrice troverà l'integrale/primitiva di $$$\frac{1}{\ln\left(n^{3}\right)}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \frac{1}{3 \ln\left(n\right)}\, dn$$$.

Soluzione

L'input viene riscritto: $$$\int{\frac{1}{\ln{\left(n^{3} \right)}} d n}=\int{\frac{1}{3 \ln{\left(n \right)}} d n}$$$.

Applica la regola del fattore costante $$$\int c f{\left(n \right)}\, dn = c \int f{\left(n \right)}\, dn$$$ con $$$c=\frac{1}{3}$$$ e $$$f{\left(n \right)} = \frac{1}{\ln{\left(n \right)}}$$$:

$${\color{red}{\int{\frac{1}{3 \ln{\left(n \right)}} d n}}} = {\color{red}{\left(\frac{\int{\frac{1}{\ln{\left(n \right)}} d n}}{3}\right)}}$$

Questo integrale (Integrale logaritmico) non ha una forma chiusa:

$$\frac{{\color{red}{\int{\frac{1}{\ln{\left(n \right)}} d n}}}}{3} = \frac{{\color{red}{\operatorname{li}{\left(n \right)}}}}{3}$$

Pertanto,

$$\int{\frac{1}{3 \ln{\left(n \right)}} d n} = \frac{\operatorname{li}{\left(n \right)}}{3}$$

Aggiungi la costante di integrazione:

$$\int{\frac{1}{3 \ln{\left(n \right)}} d n} = \frac{\operatorname{li}{\left(n \right)}}{3}+C$$

Risposta

$$$\int \frac{1}{3 \ln\left(n\right)}\, dn = \frac{\operatorname{li}{\left(n \right)}}{3} + C$$$A


Please try a new game Rotatly