Integrale di $$$\frac{1}{\ln\left(n^{3}\right)}$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \frac{1}{3 \ln\left(n\right)}\, dn$$$.
Soluzione
L'input viene riscritto: $$$\int{\frac{1}{\ln{\left(n^{3} \right)}} d n}=\int{\frac{1}{3 \ln{\left(n \right)}} d n}$$$.
Applica la regola del fattore costante $$$\int c f{\left(n \right)}\, dn = c \int f{\left(n \right)}\, dn$$$ con $$$c=\frac{1}{3}$$$ e $$$f{\left(n \right)} = \frac{1}{\ln{\left(n \right)}}$$$:
$${\color{red}{\int{\frac{1}{3 \ln{\left(n \right)}} d n}}} = {\color{red}{\left(\frac{\int{\frac{1}{\ln{\left(n \right)}} d n}}{3}\right)}}$$
Questo integrale (Integrale logaritmico) non ha una forma chiusa:
$$\frac{{\color{red}{\int{\frac{1}{\ln{\left(n \right)}} d n}}}}{3} = \frac{{\color{red}{\operatorname{li}{\left(n \right)}}}}{3}$$
Pertanto,
$$\int{\frac{1}{3 \ln{\left(n \right)}} d n} = \frac{\operatorname{li}{\left(n \right)}}{3}$$
Aggiungi la costante di integrazione:
$$\int{\frac{1}{3 \ln{\left(n \right)}} d n} = \frac{\operatorname{li}{\left(n \right)}}{3}+C$$
Risposta
$$$\int \frac{1}{3 \ln\left(n\right)}\, dn = \frac{\operatorname{li}{\left(n \right)}}{3} + C$$$A