Integrale di $$$\frac{1}{\sqrt{x^{2} + x + 1}}$$$

La calcolatrice troverà l'integrale/primitiva di $$$\frac{1}{\sqrt{x^{2} + x + 1}}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \frac{1}{\sqrt{x^{2} + x + 1}}\, dx$$$.

Soluzione

Completa il quadrato (i passaggi sono visibili »): $$$x^{2} + x + 1 = \left(x + \frac{1}{2}\right)^{2} + \frac{3}{4}$$$:

$${\color{red}{\int{\frac{1}{\sqrt{x^{2} + x + 1}} d x}}} = {\color{red}{\int{\frac{1}{\sqrt{\left(x + \frac{1}{2}\right)^{2} + \frac{3}{4}}} d x}}}$$

Sia $$$u=x + \frac{1}{2}$$$.

Quindi $$$du=\left(x + \frac{1}{2}\right)^{\prime }dx = 1 dx$$$ (i passaggi si possono vedere »), e si ha che $$$dx = du$$$.

L'integrale diventa

$${\color{red}{\int{\frac{1}{\sqrt{\left(x + \frac{1}{2}\right)^{2} + \frac{3}{4}}} d x}}} = {\color{red}{\int{\frac{1}{\sqrt{u^{2} + \frac{3}{4}}} d u}}}$$

Sia $$$u=\frac{\sqrt{3} \sinh{\left(v \right)}}{2}$$$.

Quindi $$$du=\left(\frac{\sqrt{3} \sinh{\left(v \right)}}{2}\right)^{\prime }dv = \frac{\sqrt{3} \cosh{\left(v \right)}}{2} dv$$$ (i passaggi possono essere visti »).

Inoltre, ne consegue che $$$v=\operatorname{asinh}{\left(\frac{2 \sqrt{3} u}{3} \right)}$$$.

Quindi,

$$$\frac{1}{\sqrt{ u ^{2} + \frac{3}{4}}} = \frac{1}{\sqrt{\frac{3 \sinh^{2}{\left( v \right)}}{4} + \frac{3}{4}}}$$$

Usa l'identità $$$\sinh^{2}{\left( v \right)} + 1 = \cosh^{2}{\left( v \right)}$$$:

$$$\frac{1}{\sqrt{\frac{3 \sinh^{2}{\left( v \right)}}{4} + \frac{3}{4}}}=\frac{2 \sqrt{3}}{3 \sqrt{\sinh^{2}{\left( v \right)} + 1}}=\frac{2 \sqrt{3}}{3 \sqrt{\cosh^{2}{\left( v \right)}}}$$$

$$$\frac{2 \sqrt{3}}{3 \sqrt{\cosh^{2}{\left( v \right)}}} = \frac{2 \sqrt{3}}{3 \cosh{\left( v \right)}}$$$

L’integrale diventa

$${\color{red}{\int{\frac{1}{\sqrt{u^{2} + \frac{3}{4}}} d u}}} = {\color{red}{\int{1 d v}}}$$

Applica la regola della costante $$$\int c\, dv = c v$$$ con $$$c=1$$$:

$${\color{red}{\int{1 d v}}} = {\color{red}{v}}$$

Ricordiamo che $$$v=\operatorname{asinh}{\left(\frac{2 \sqrt{3} u}{3} \right)}$$$:

$${\color{red}{v}} = {\color{red}{\operatorname{asinh}{\left(\frac{2 \sqrt{3} u}{3} \right)}}}$$

Ricordiamo che $$$u=x + \frac{1}{2}$$$:

$$\operatorname{asinh}{\left(\frac{2 \sqrt{3} {\color{red}{u}}}{3} \right)} = \operatorname{asinh}{\left(\frac{2 \sqrt{3} {\color{red}{\left(x + \frac{1}{2}\right)}}}{3} \right)}$$

Pertanto,

$$\int{\frac{1}{\sqrt{x^{2} + x + 1}} d x} = \operatorname{asinh}{\left(\frac{2 \sqrt{3} \left(x + \frac{1}{2}\right)}{3} \right)}$$

Semplifica:

$$\int{\frac{1}{\sqrt{x^{2} + x + 1}} d x} = \operatorname{asinh}{\left(\frac{\sqrt{3} \left(2 x + 1\right)}{3} \right)}$$

Aggiungi la costante di integrazione:

$$\int{\frac{1}{\sqrt{x^{2} + x + 1}} d x} = \operatorname{asinh}{\left(\frac{\sqrt{3} \left(2 x + 1\right)}{3} \right)}+C$$

Risposta

$$$\int \frac{1}{\sqrt{x^{2} + x + 1}}\, dx = \operatorname{asinh}{\left(\frac{\sqrt{3} \left(2 x + 1\right)}{3} \right)} + C$$$A


Please try a new game Rotatly