Integrale di $$$y \sin{\left(x y \right)}$$$ rispetto a $$$x$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int y \sin{\left(x y \right)}\, dx$$$.
Soluzione
Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=y$$$ e $$$f{\left(x \right)} = \sin{\left(x y \right)}$$$:
$${\color{red}{\int{y \sin{\left(x y \right)} d x}}} = {\color{red}{y \int{\sin{\left(x y \right)} d x}}}$$
Sia $$$u=x y$$$.
Quindi $$$du=\left(x y\right)^{\prime }dx = y dx$$$ (i passaggi si possono vedere »), e si ha che $$$dx = \frac{du}{y}$$$.
L'integrale può essere riscritto come
$$y {\color{red}{\int{\sin{\left(x y \right)} d x}}} = y {\color{red}{\int{\frac{\sin{\left(u \right)}}{y} d u}}}$$
Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{y}$$$ e $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$$y {\color{red}{\int{\frac{\sin{\left(u \right)}}{y} d u}}} = y {\color{red}{\frac{\int{\sin{\left(u \right)} d u}}{y}}}$$
L'integrale del seno è $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$${\color{red}{\int{\sin{\left(u \right)} d u}}} = {\color{red}{\left(- \cos{\left(u \right)}\right)}}$$
Ricordiamo che $$$u=x y$$$:
$$- \cos{\left({\color{red}{u}} \right)} = - \cos{\left({\color{red}{x y}} \right)}$$
Pertanto,
$$\int{y \sin{\left(x y \right)} d x} = - \cos{\left(x y \right)}$$
Aggiungi la costante di integrazione:
$$\int{y \sin{\left(x y \right)} d x} = - \cos{\left(x y \right)}+C$$
Risposta
$$$\int y \sin{\left(x y \right)}\, dx = - \cos{\left(x y \right)} + C$$$A