Integrale di $$$\frac{x}{\sqrt{- 6 x^{4} + 2 x^{2}}}$$$

La calcolatrice troverà l'integrale/primitiva di $$$\frac{x}{\sqrt{- 6 x^{4} + 2 x^{2}}}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \frac{x}{\sqrt{- 6 x^{4} + 2 x^{2}}}\, dx$$$.

Soluzione

L'input viene riscritto: $$$\int{\frac{x}{\sqrt{- 6 x^{4} + 2 x^{2}}} d x}=\int{\frac{1}{\sqrt{2 - 6 x^{2}}} d x}$$$.

Semplifica l’integranda:

$${\color{red}{\int{\frac{1}{\sqrt{2 - 6 x^{2}}} d x}}} = {\color{red}{\int{\frac{\sqrt{2}}{2 \sqrt{1 - 3 x^{2}}} d x}}}$$

Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{\sqrt{2}}{2}$$$ e $$$f{\left(x \right)} = \frac{1}{\sqrt{1 - 3 x^{2}}}$$$:

$${\color{red}{\int{\frac{\sqrt{2}}{2 \sqrt{1 - 3 x^{2}}} d x}}} = {\color{red}{\left(\frac{\sqrt{2} \int{\frac{1}{\sqrt{1 - 3 x^{2}}} d x}}{2}\right)}}$$

Sia $$$x=\frac{\sqrt{3} \sin{\left(u \right)}}{3}$$$.

Quindi $$$dx=\left(\frac{\sqrt{3} \sin{\left(u \right)}}{3}\right)^{\prime }du = \frac{\sqrt{3} \cos{\left(u \right)}}{3} du$$$ (i passaggi possono essere visti »).

Inoltre, ne consegue che $$$u=\operatorname{asin}{\left(\sqrt{3} x \right)}$$$.

Pertanto,

$$$\frac{1}{\sqrt{1 - 3 x^{2}}} = \frac{1}{\sqrt{1 - \sin^{2}{\left( u \right)}}}$$$

Usa l'identità $$$1 - \sin^{2}{\left( u \right)} = \cos^{2}{\left( u \right)}$$$:

$$$\frac{1}{\sqrt{1 - \sin^{2}{\left( u \right)}}}=\frac{1}{\sqrt{\cos^{2}{\left( u \right)}}}$$$

Assumendo che $$$\cos{\left( u \right)} \ge 0$$$, otteniamo quanto segue:

$$$\frac{1}{\sqrt{\cos^{2}{\left( u \right)}}} = \frac{1}{\cos{\left( u \right)}}$$$

L'integrale può essere riscritto come

$$\frac{\sqrt{2} {\color{red}{\int{\frac{1}{\sqrt{1 - 3 x^{2}}} d x}}}}{2} = \frac{\sqrt{2} {\color{red}{\int{\frac{\sqrt{3}}{3} d u}}}}{2}$$

Applica la regola della costante $$$\int c\, du = c u$$$ con $$$c=\frac{\sqrt{3}}{3}$$$:

$$\frac{\sqrt{2} {\color{red}{\int{\frac{\sqrt{3}}{3} d u}}}}{2} = \frac{\sqrt{2} {\color{red}{\left(\frac{\sqrt{3} u}{3}\right)}}}{2}$$

Ricordiamo che $$$u=\operatorname{asin}{\left(\sqrt{3} x \right)}$$$:

$$\frac{\sqrt{6} {\color{red}{u}}}{6} = \frac{\sqrt{6} {\color{red}{\operatorname{asin}{\left(\sqrt{3} x \right)}}}}{6}$$

Pertanto,

$$\int{\frac{1}{\sqrt{2 - 6 x^{2}}} d x} = \frac{\sqrt{6} \operatorname{asin}{\left(\sqrt{3} x \right)}}{6}$$

Aggiungi la costante di integrazione:

$$\int{\frac{1}{\sqrt{2 - 6 x^{2}}} d x} = \frac{\sqrt{6} \operatorname{asin}{\left(\sqrt{3} x \right)}}{6}+C$$

Risposta

$$$\int \frac{x}{\sqrt{- 6 x^{4} + 2 x^{2}}}\, dx = \frac{\sqrt{6} \operatorname{asin}{\left(\sqrt{3} x \right)}}{6} + C$$$A


Please try a new game Rotatly