Integrale di $$$\frac{x}{\sqrt{- 6 x^{4} + 2 x^{2}}}$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \frac{x}{\sqrt{- 6 x^{4} + 2 x^{2}}}\, dx$$$.
Soluzione
L'input viene riscritto: $$$\int{\frac{x}{\sqrt{- 6 x^{4} + 2 x^{2}}} d x}=\int{\frac{1}{\sqrt{2 - 6 x^{2}}} d x}$$$.
Semplifica l’integranda:
$${\color{red}{\int{\frac{1}{\sqrt{2 - 6 x^{2}}} d x}}} = {\color{red}{\int{\frac{\sqrt{2}}{2 \sqrt{1 - 3 x^{2}}} d x}}}$$
Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{\sqrt{2}}{2}$$$ e $$$f{\left(x \right)} = \frac{1}{\sqrt{1 - 3 x^{2}}}$$$:
$${\color{red}{\int{\frac{\sqrt{2}}{2 \sqrt{1 - 3 x^{2}}} d x}}} = {\color{red}{\left(\frac{\sqrt{2} \int{\frac{1}{\sqrt{1 - 3 x^{2}}} d x}}{2}\right)}}$$
Sia $$$x=\frac{\sqrt{3} \sin{\left(u \right)}}{3}$$$.
Quindi $$$dx=\left(\frac{\sqrt{3} \sin{\left(u \right)}}{3}\right)^{\prime }du = \frac{\sqrt{3} \cos{\left(u \right)}}{3} du$$$ (i passaggi possono essere visti »).
Inoltre, ne consegue che $$$u=\operatorname{asin}{\left(\sqrt{3} x \right)}$$$.
Pertanto,
$$$\frac{1}{\sqrt{1 - 3 x^{2}}} = \frac{1}{\sqrt{1 - \sin^{2}{\left( u \right)}}}$$$
Usa l'identità $$$1 - \sin^{2}{\left( u \right)} = \cos^{2}{\left( u \right)}$$$:
$$$\frac{1}{\sqrt{1 - \sin^{2}{\left( u \right)}}}=\frac{1}{\sqrt{\cos^{2}{\left( u \right)}}}$$$
Assumendo che $$$\cos{\left( u \right)} \ge 0$$$, otteniamo quanto segue:
$$$\frac{1}{\sqrt{\cos^{2}{\left( u \right)}}} = \frac{1}{\cos{\left( u \right)}}$$$
L'integrale può essere riscritto come
$$\frac{\sqrt{2} {\color{red}{\int{\frac{1}{\sqrt{1 - 3 x^{2}}} d x}}}}{2} = \frac{\sqrt{2} {\color{red}{\int{\frac{\sqrt{3}}{3} d u}}}}{2}$$
Applica la regola della costante $$$\int c\, du = c u$$$ con $$$c=\frac{\sqrt{3}}{3}$$$:
$$\frac{\sqrt{2} {\color{red}{\int{\frac{\sqrt{3}}{3} d u}}}}{2} = \frac{\sqrt{2} {\color{red}{\left(\frac{\sqrt{3} u}{3}\right)}}}{2}$$
Ricordiamo che $$$u=\operatorname{asin}{\left(\sqrt{3} x \right)}$$$:
$$\frac{\sqrt{6} {\color{red}{u}}}{6} = \frac{\sqrt{6} {\color{red}{\operatorname{asin}{\left(\sqrt{3} x \right)}}}}{6}$$
Pertanto,
$$\int{\frac{1}{\sqrt{2 - 6 x^{2}}} d x} = \frac{\sqrt{6} \operatorname{asin}{\left(\sqrt{3} x \right)}}{6}$$
Aggiungi la costante di integrazione:
$$\int{\frac{1}{\sqrt{2 - 6 x^{2}}} d x} = \frac{\sqrt{6} \operatorname{asin}{\left(\sqrt{3} x \right)}}{6}+C$$
Risposta
$$$\int \frac{x}{\sqrt{- 6 x^{4} + 2 x^{2}}}\, dx = \frac{\sqrt{6} \operatorname{asin}{\left(\sqrt{3} x \right)}}{6} + C$$$A