Integrale di $$$- a^{2} + x^{2}$$$ rispetto a $$$x$$$

Il calcolatore troverà l'integrale/antiderivata di $$$- a^{2} + x^{2}$$$ rispetto a $$$x$$$, con i passaggi mostrati.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \left(- a^{2} + x^{2}\right)\, dx$$$.

Soluzione

Integra termine per termine:

$${\color{red}{\int{\left(- a^{2} + x^{2}\right)d x}}} = {\color{red}{\left(- \int{a^{2} d x} + \int{x^{2} d x}\right)}}$$

Applica la regola della potenza $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=2$$$:

$$- \int{a^{2} d x} + {\color{red}{\int{x^{2} d x}}}=- \int{a^{2} d x} + {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=- \int{a^{2} d x} + {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$

Applica la regola della costante $$$\int c\, dx = c x$$$ con $$$c=a^{2}$$$:

$$\frac{x^{3}}{3} - {\color{red}{\int{a^{2} d x}}} = \frac{x^{3}}{3} - {\color{red}{a^{2} x}}$$

Pertanto,

$$\int{\left(- a^{2} + x^{2}\right)d x} = - a^{2} x + \frac{x^{3}}{3}$$

Semplifica:

$$\int{\left(- a^{2} + x^{2}\right)d x} = x \left(- a^{2} + \frac{x^{2}}{3}\right)$$

Aggiungi la costante di integrazione:

$$\int{\left(- a^{2} + x^{2}\right)d x} = x \left(- a^{2} + \frac{x^{2}}{3}\right)+C$$

Risposta

$$$\int \left(- a^{2} + x^{2}\right)\, dx = x \left(- a^{2} + \frac{x^{2}}{3}\right) + C$$$A


Please try a new game Rotatly