Integrale di $$$x^{2} \cos{\left(t \right)}$$$ rispetto a $$$x$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int x^{2} \cos{\left(t \right)}\, dx$$$.
Soluzione
Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\cos{\left(t \right)}$$$ e $$$f{\left(x \right)} = x^{2}$$$:
$${\color{red}{\int{x^{2} \cos{\left(t \right)} d x}}} = {\color{red}{\cos{\left(t \right)} \int{x^{2} d x}}}$$
Applica la regola della potenza $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=2$$$:
$$\cos{\left(t \right)} {\color{red}{\int{x^{2} d x}}}=\cos{\left(t \right)} {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=\cos{\left(t \right)} {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$
Pertanto,
$$\int{x^{2} \cos{\left(t \right)} d x} = \frac{x^{3} \cos{\left(t \right)}}{3}$$
Aggiungi la costante di integrazione:
$$\int{x^{2} \cos{\left(t \right)} d x} = \frac{x^{3} \cos{\left(t \right)}}{3}+C$$
Risposta
$$$\int x^{2} \cos{\left(t \right)}\, dx = \frac{x^{3} \cos{\left(t \right)}}{3} + C$$$A