Integrale di $$$x^{5} \ln\left(7 x\right)$$$

La calcolatrice troverà l'integrale/primitiva di $$$x^{5} \ln\left(7 x\right)$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int x^{5} \ln\left(7 x\right)\, dx$$$.

Soluzione

Per l'integrale $$$\int{x^{5} \ln{\left(7 x \right)} d x}$$$, usa l'integrazione per parti $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Siano $$$\operatorname{u}=\ln{\left(7 x \right)}$$$ e $$$\operatorname{dv}=x^{5} dx$$$.

Quindi $$$\operatorname{du}=\left(\ln{\left(7 x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$ (i passaggi si possono vedere ») e $$$\operatorname{v}=\int{x^{5} d x}=\frac{x^{6}}{6}$$$ (i passaggi si possono vedere »).

Quindi,

$${\color{red}{\int{x^{5} \ln{\left(7 x \right)} d x}}}={\color{red}{\left(\ln{\left(7 x \right)} \cdot \frac{x^{6}}{6}-\int{\frac{x^{6}}{6} \cdot \frac{1}{x} d x}\right)}}={\color{red}{\left(\frac{x^{6} \ln{\left(7 x \right)}}{6} - \int{\frac{x^{5}}{6} d x}\right)}}$$

Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{6}$$$ e $$$f{\left(x \right)} = x^{5}$$$:

$$\frac{x^{6} \ln{\left(7 x \right)}}{6} - {\color{red}{\int{\frac{x^{5}}{6} d x}}} = \frac{x^{6} \ln{\left(7 x \right)}}{6} - {\color{red}{\left(\frac{\int{x^{5} d x}}{6}\right)}}$$

Applica la regola della potenza $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=5$$$:

$$\frac{x^{6} \ln{\left(7 x \right)}}{6} - \frac{{\color{red}{\int{x^{5} d x}}}}{6}=\frac{x^{6} \ln{\left(7 x \right)}}{6} - \frac{{\color{red}{\frac{x^{1 + 5}}{1 + 5}}}}{6}=\frac{x^{6} \ln{\left(7 x \right)}}{6} - \frac{{\color{red}{\left(\frac{x^{6}}{6}\right)}}}{6}$$

Pertanto,

$$\int{x^{5} \ln{\left(7 x \right)} d x} = \frac{x^{6} \ln{\left(7 x \right)}}{6} - \frac{x^{6}}{36}$$

Semplifica:

$$\int{x^{5} \ln{\left(7 x \right)} d x} = \frac{x^{6} \left(6 \ln{\left(x \right)} - 1 + 6 \ln{\left(7 \right)}\right)}{36}$$

Aggiungi la costante di integrazione:

$$\int{x^{5} \ln{\left(7 x \right)} d x} = \frac{x^{6} \left(6 \ln{\left(x \right)} - 1 + 6 \ln{\left(7 \right)}\right)}{36}+C$$

Risposta

$$$\int x^{5} \ln\left(7 x\right)\, dx = \frac{x^{6} \left(6 \ln\left(x\right) - 1 + 6 \ln\left(7\right)\right)}{36} + C$$$A


Please try a new game Rotatly