Integrale di $$$\frac{x}{k - x^{2}}$$$ rispetto a $$$x$$$

Il calcolatore troverà l'integrale/antiderivata di $$$\frac{x}{k - x^{2}}$$$ rispetto a $$$x$$$, con i passaggi mostrati.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \frac{x}{k - x^{2}}\, dx$$$.

Soluzione

Sia $$$u=k - x^{2}$$$.

Quindi $$$du=\left(k - x^{2}\right)^{\prime }dx = - 2 x dx$$$ (i passaggi si possono vedere »), e si ha che $$$x dx = - \frac{du}{2}$$$.

L'integrale diventa

$${\color{red}{\int{\frac{x}{k - x^{2}} d x}}} = {\color{red}{\int{\left(- \frac{1}{2 u}\right)d u}}}$$

Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=- \frac{1}{2}$$$ e $$$f{\left(u \right)} = \frac{1}{u}$$$:

$${\color{red}{\int{\left(- \frac{1}{2 u}\right)d u}}} = {\color{red}{\left(- \frac{\int{\frac{1}{u} d u}}{2}\right)}}$$

L'integrale di $$$\frac{1}{u}$$$ è $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$- \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$

Ricordiamo che $$$u=k - x^{2}$$$:

$$- \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} = - \frac{\ln{\left(\left|{{\color{red}{\left(k - x^{2}\right)}}}\right| \right)}}{2}$$

Pertanto,

$$\int{\frac{x}{k - x^{2}} d x} = - \frac{\ln{\left(\left|{k - x^{2}}\right| \right)}}{2}$$

Aggiungi la costante di integrazione:

$$\int{\frac{x}{k - x^{2}} d x} = - \frac{\ln{\left(\left|{k - x^{2}}\right| \right)}}{2}+C$$

Risposta

$$$\int \frac{x}{k - x^{2}}\, dx = - \frac{\ln\left(\left|{k - x^{2}}\right|\right)}{2} + C$$$A


Please try a new game Rotatly