Integrale di $$$2 x^{\frac{4}{3}}$$$

La calcolatrice troverà l'integrale/primitiva di $$$2 x^{\frac{4}{3}}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int 2 x^{\frac{4}{3}}\, dx$$$.

Soluzione

Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=2$$$ e $$$f{\left(x \right)} = x^{\frac{4}{3}}$$$:

$${\color{red}{\int{2 x^{\frac{4}{3}} d x}}} = {\color{red}{\left(2 \int{x^{\frac{4}{3}} d x}\right)}}$$

Applica la regola della potenza $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=\frac{4}{3}$$$:

$$2 {\color{red}{\int{x^{\frac{4}{3}} d x}}}=2 {\color{red}{\frac{x^{1 + \frac{4}{3}}}{1 + \frac{4}{3}}}}=2 {\color{red}{\left(\frac{3 x^{\frac{7}{3}}}{7}\right)}}$$

Pertanto,

$$\int{2 x^{\frac{4}{3}} d x} = \frac{6 x^{\frac{7}{3}}}{7}$$

Aggiungi la costante di integrazione:

$$\int{2 x^{\frac{4}{3}} d x} = \frac{6 x^{\frac{7}{3}}}{7}+C$$

Risposta

$$$\int 2 x^{\frac{4}{3}}\, dx = \frac{6 x^{\frac{7}{3}}}{7} + C$$$A


Please try a new game Rotatly