Integrale di $$$\frac{\sqrt{\frac{x - 1}{x}}}{x^{2}}$$$

La calcolatrice troverà l'integrale/primitiva di $$$\frac{\sqrt{\frac{x - 1}{x}}}{x^{2}}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \frac{\sqrt{\frac{x - 1}{x}}}{x^{2}}\, dx$$$.

Soluzione

L'input viene riscritto: $$$\int{\frac{\sqrt{\frac{x - 1}{x}}}{x^{2}} d x}=\int{\frac{\sqrt{x - 1}}{x^{\frac{5}{2}}} d x}$$$.

Sia $$$u=\sqrt{x}$$$.

Quindi $$$du=\left(\sqrt{x}\right)^{\prime }dx = \frac{1}{2 \sqrt{x}} dx$$$ (i passaggi si possono vedere »), e si ha che $$$\frac{dx}{\sqrt{x}} = 2 du$$$.

L'integrale può essere riscritto come

$${\color{red}{\int{\frac{\sqrt{x - 1}}{x^{\frac{5}{2}}} d x}}} = {\color{red}{\int{\frac{2 \sqrt{u^{2} - 1}}{u^{4}} d u}}}$$

Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=2$$$ e $$$f{\left(u \right)} = \frac{\sqrt{u^{2} - 1}}{u^{4}}$$$:

$${\color{red}{\int{\frac{2 \sqrt{u^{2} - 1}}{u^{4}} d u}}} = {\color{red}{\left(2 \int{\frac{\sqrt{u^{2} - 1}}{u^{4}} d u}\right)}}$$

Sia $$$u=\cosh{\left(v \right)}$$$.

Quindi $$$du=\left(\cosh{\left(v \right)}\right)^{\prime }dv = \sinh{\left(v \right)} dv$$$ (i passaggi possono essere visti »).

Inoltre, ne consegue che $$$v=\operatorname{acosh}{\left(u \right)}$$$.

L'integrando diventa

$$$\frac{\sqrt{ u ^{2} - 1}}{ u ^{4}} = \frac{\sqrt{\cosh^{2}{\left( v \right)} - 1}}{\cosh^{4}{\left( v \right)}}$$$

Usa l'identità $$$\cosh^{2}{\left( v \right)} - 1 = \sinh^{2}{\left( v \right)}$$$:

$$$\frac{\sqrt{\cosh^{2}{\left( v \right)} - 1}}{\cosh^{4}{\left( v \right)}}=\frac{\sqrt{\sinh^{2}{\left( v \right)}}}{\cosh^{4}{\left( v \right)}}$$$

Assumendo che $$$\sinh{\left( v \right)} \ge 0$$$, otteniamo quanto segue:

$$$\frac{\sqrt{\sinh^{2}{\left( v \right)}}}{\cosh^{4}{\left( v \right)}} = \frac{\sinh{\left( v \right)}}{\cosh^{4}{\left( v \right)}}$$$

L'integrale può essere riscritto come

$$2 {\color{red}{\int{\frac{\sqrt{u^{2} - 1}}{u^{4}} d u}}} = 2 {\color{red}{\int{\frac{\sinh^{2}{\left(v \right)}}{\cosh^{4}{\left(v \right)}} d v}}}$$

Moltiplica il numeratore e il denominatore per $$$\cosh^{2}{\left( v \right)}$$$ e converti $$$\frac{\sinh^{2}{\left( v \right)}}{\cosh^{2}{\left( v \right)}}$$$ in $$$\tanh^{2}{\left( v \right)}$$$:

$$2 {\color{red}{\int{\frac{\sinh^{2}{\left(v \right)}}{\cosh^{4}{\left(v \right)}} d v}}} = 2 {\color{red}{\int{\frac{\tanh^{2}{\left(v \right)}}{\cosh^{2}{\left(v \right)}} d v}}}$$

Sia $$$w=\tanh{\left(v \right)}$$$.

Quindi $$$dw=\left(\tanh{\left(v \right)}\right)^{\prime }dv = \operatorname{sech}^{2}{\left(v \right)} dv$$$ (i passaggi si possono vedere »), e si ha che $$$\operatorname{sech}^{2}{\left(v \right)} dv = dw$$$.

L'integrale può essere riscritto come

$$2 {\color{red}{\int{\frac{\tanh^{2}{\left(v \right)}}{\cosh^{2}{\left(v \right)}} d v}}} = 2 {\color{red}{\int{w^{2} d w}}}$$

Applica la regola della potenza $$$\int w^{n}\, dw = \frac{w^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=2$$$:

$$2 {\color{red}{\int{w^{2} d w}}}=2 {\color{red}{\frac{w^{1 + 2}}{1 + 2}}}=2 {\color{red}{\left(\frac{w^{3}}{3}\right)}}$$

Ricordiamo che $$$w=\tanh{\left(v \right)}$$$:

$$\frac{2 {\color{red}{w}}^{3}}{3} = \frac{2 {\color{red}{\tanh{\left(v \right)}}}^{3}}{3}$$

Ricordiamo che $$$v=\operatorname{acosh}{\left(u \right)}$$$:

$$\frac{2 \tanh^{3}{\left({\color{red}{v}} \right)}}{3} = \frac{2 \tanh^{3}{\left({\color{red}{\operatorname{acosh}{\left(u \right)}}} \right)}}{3}$$

Ricordiamo che $$$u=\sqrt{x}$$$:

$$\frac{2 {\color{red}{u}}^{-3} \left(1 + {\color{red}{u}}\right)^{\frac{3}{2}} \left(-1 + {\color{red}{u}}\right)^{\frac{3}{2}}}{3} = \frac{2 {\color{red}{\sqrt{x}}}^{-3} \left(1 + {\color{red}{\sqrt{x}}}\right)^{\frac{3}{2}} \left(-1 + {\color{red}{\sqrt{x}}}\right)^{\frac{3}{2}}}{3}$$

Pertanto,

$$\int{\frac{\sqrt{x - 1}}{x^{\frac{5}{2}}} d x} = \frac{2 \left(\sqrt{x} - 1\right)^{\frac{3}{2}} \left(\sqrt{x} + 1\right)^{\frac{3}{2}}}{3 x^{\frac{3}{2}}}$$

Aggiungi la costante di integrazione:

$$\int{\frac{\sqrt{x - 1}}{x^{\frac{5}{2}}} d x} = \frac{2 \left(\sqrt{x} - 1\right)^{\frac{3}{2}} \left(\sqrt{x} + 1\right)^{\frac{3}{2}}}{3 x^{\frac{3}{2}}}+C$$

Risposta

$$$\int \frac{\sqrt{\frac{x - 1}{x}}}{x^{2}}\, dx = \frac{2 \left(\sqrt{x} - 1\right)^{\frac{3}{2}} \left(\sqrt{x} + 1\right)^{\frac{3}{2}}}{3 x^{\frac{3}{2}}} + C$$$A


Please try a new game Rotatly