Integrale di $$$\frac{\sin{\left(x \right)}}{\sin{\left(\frac{\pi t}{4} \right)}}$$$ rispetto a $$$x$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \frac{\sin{\left(x \right)}}{\sin{\left(\frac{\pi t}{4} \right)}}\, dx$$$.
Soluzione
Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{\sin{\left(\frac{\pi t}{4} \right)}}$$$ e $$$f{\left(x \right)} = \sin{\left(x \right)}$$$:
$${\color{red}{\int{\frac{\sin{\left(x \right)}}{\sin{\left(\frac{\pi t}{4} \right)}} d x}}} = {\color{red}{\frac{\int{\sin{\left(x \right)} d x}}{\sin{\left(\frac{\pi t}{4} \right)}}}}$$
L'integrale del seno è $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:
$$\frac{{\color{red}{\int{\sin{\left(x \right)} d x}}}}{\sin{\left(\frac{\pi t}{4} \right)}} = \frac{{\color{red}{\left(- \cos{\left(x \right)}\right)}}}{\sin{\left(\frac{\pi t}{4} \right)}}$$
Pertanto,
$$\int{\frac{\sin{\left(x \right)}}{\sin{\left(\frac{\pi t}{4} \right)}} d x} = - \frac{\cos{\left(x \right)}}{\sin{\left(\frac{\pi t}{4} \right)}}$$
Aggiungi la costante di integrazione:
$$\int{\frac{\sin{\left(x \right)}}{\sin{\left(\frac{\pi t}{4} \right)}} d x} = - \frac{\cos{\left(x \right)}}{\sin{\left(\frac{\pi t}{4} \right)}}+C$$
Risposta
$$$\int \frac{\sin{\left(x \right)}}{\sin{\left(\frac{\pi t}{4} \right)}}\, dx = - \frac{\cos{\left(x \right)}}{\sin{\left(\frac{\pi t}{4} \right)}} + C$$$A