Integrale di $$$\frac{\sin{\left(5 x \right)}}{2 \sin{\left(\frac{x_{0}}{5} \right)}}$$$ rispetto a $$$x$$$

Il calcolatore troverà l'integrale/antiderivata di $$$\frac{\sin{\left(5 x \right)}}{2 \sin{\left(\frac{x_{0}}{5} \right)}}$$$ rispetto a $$$x$$$, con i passaggi mostrati.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \frac{\sin{\left(5 x \right)}}{2 \sin{\left(\frac{x_{0}}{5} \right)}}\, dx$$$.

Soluzione

Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{2 \sin{\left(\frac{x_{0}}{5} \right)}}$$$ e $$$f{\left(x \right)} = \sin{\left(5 x \right)}$$$:

$${\color{red}{\int{\frac{\sin{\left(5 x \right)}}{2 \sin{\left(\frac{x_{0}}{5} \right)}} d x}}} = {\color{red}{\left(\frac{\int{\sin{\left(5 x \right)} d x}}{2 \sin{\left(\frac{x_{0}}{5} \right)}}\right)}}$$

Sia $$$u=5 x$$$.

Quindi $$$du=\left(5 x\right)^{\prime }dx = 5 dx$$$ (i passaggi si possono vedere »), e si ha che $$$dx = \frac{du}{5}$$$.

L'integrale può essere riscritto come

$$\frac{{\color{red}{\int{\sin{\left(5 x \right)} d x}}}}{2 \sin{\left(\frac{x_{0}}{5} \right)}} = \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{5} d u}}}}{2 \sin{\left(\frac{x_{0}}{5} \right)}}$$

Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{5}$$$ e $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:

$$\frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{5} d u}}}}{2 \sin{\left(\frac{x_{0}}{5} \right)}} = \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{5}\right)}}}{2 \sin{\left(\frac{x_{0}}{5} \right)}}$$

L'integrale del seno è $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:

$$\frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{10 \sin{\left(\frac{x_{0}}{5} \right)}} = \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{10 \sin{\left(\frac{x_{0}}{5} \right)}}$$

Ricordiamo che $$$u=5 x$$$:

$$- \frac{\cos{\left({\color{red}{u}} \right)}}{10 \sin{\left(\frac{x_{0}}{5} \right)}} = - \frac{\cos{\left({\color{red}{\left(5 x\right)}} \right)}}{10 \sin{\left(\frac{x_{0}}{5} \right)}}$$

Pertanto,

$$\int{\frac{\sin{\left(5 x \right)}}{2 \sin{\left(\frac{x_{0}}{5} \right)}} d x} = - \frac{\cos{\left(5 x \right)}}{10 \sin{\left(\frac{x_{0}}{5} \right)}}$$

Aggiungi la costante di integrazione:

$$\int{\frac{\sin{\left(5 x \right)}}{2 \sin{\left(\frac{x_{0}}{5} \right)}} d x} = - \frac{\cos{\left(5 x \right)}}{10 \sin{\left(\frac{x_{0}}{5} \right)}}+C$$

Risposta

$$$\int \frac{\sin{\left(5 x \right)}}{2 \sin{\left(\frac{x_{0}}{5} \right)}}\, dx = - \frac{\cos{\left(5 x \right)}}{10 \sin{\left(\frac{x_{0}}{5} \right)}} + C$$$A


Please try a new game Rotatly