Integrale di $$$a^{2} b^{2} \sin^{2}{\left(2 x \right)}$$$ rispetto a $$$x$$$

Il calcolatore troverà l'integrale/antiderivata di $$$a^{2} b^{2} \sin^{2}{\left(2 x \right)}$$$ rispetto a $$$x$$$, con i passaggi mostrati.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int a^{2} b^{2} \sin^{2}{\left(2 x \right)}\, dx$$$.

Soluzione

Applica la formula di riduzione della potenza per $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$ con $$$\alpha=2 x$$$:

$${\color{red}{\int{a^{2} b^{2} \sin^{2}{\left(2 x \right)} d x}}} = {\color{red}{\int{\frac{a^{2} b^{2} \left(1 - \cos{\left(4 x \right)}\right)}{2} d x}}}$$

Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{2}$$$ e $$$f{\left(x \right)} = a^{2} b^{2} \left(1 - \cos{\left(4 x \right)}\right)$$$:

$${\color{red}{\int{\frac{a^{2} b^{2} \left(1 - \cos{\left(4 x \right)}\right)}{2} d x}}} = {\color{red}{\left(\frac{\int{a^{2} b^{2} \left(1 - \cos{\left(4 x \right)}\right) d x}}{2}\right)}}$$

Expand the expression:

$$\frac{{\color{red}{\int{a^{2} b^{2} \left(1 - \cos{\left(4 x \right)}\right) d x}}}}{2} = \frac{{\color{red}{\int{\left(- a^{2} b^{2} \cos{\left(4 x \right)} + a^{2} b^{2}\right)d x}}}}{2}$$

Integra termine per termine:

$$\frac{{\color{red}{\int{\left(- a^{2} b^{2} \cos{\left(4 x \right)} + a^{2} b^{2}\right)d x}}}}{2} = \frac{{\color{red}{\left(\int{a^{2} b^{2} d x} - \int{a^{2} b^{2} \cos{\left(4 x \right)} d x}\right)}}}{2}$$

Applica la regola della costante $$$\int c\, dx = c x$$$ con $$$c=a^{2} b^{2}$$$:

$$- \frac{\int{a^{2} b^{2} \cos{\left(4 x \right)} d x}}{2} + \frac{{\color{red}{\int{a^{2} b^{2} d x}}}}{2} = - \frac{\int{a^{2} b^{2} \cos{\left(4 x \right)} d x}}{2} + \frac{{\color{red}{a^{2} b^{2} x}}}{2}$$

Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=a^{2} b^{2}$$$ e $$$f{\left(x \right)} = \cos{\left(4 x \right)}$$$:

$$\frac{a^{2} b^{2} x}{2} - \frac{{\color{red}{\int{a^{2} b^{2} \cos{\left(4 x \right)} d x}}}}{2} = \frac{a^{2} b^{2} x}{2} - \frac{{\color{red}{a^{2} b^{2} \int{\cos{\left(4 x \right)} d x}}}}{2}$$

Sia $$$u=4 x$$$.

Quindi $$$du=\left(4 x\right)^{\prime }dx = 4 dx$$$ (i passaggi si possono vedere »), e si ha che $$$dx = \frac{du}{4}$$$.

L'integrale diventa

$$\frac{a^{2} b^{2} x}{2} - \frac{a^{2} b^{2} {\color{red}{\int{\cos{\left(4 x \right)} d x}}}}{2} = \frac{a^{2} b^{2} x}{2} - \frac{a^{2} b^{2} {\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{2}$$

Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{4}$$$ e $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:

$$\frac{a^{2} b^{2} x}{2} - \frac{a^{2} b^{2} {\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{2} = \frac{a^{2} b^{2} x}{2} - \frac{a^{2} b^{2} {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{4}\right)}}}{2}$$

L'integrale del coseno è $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$\frac{a^{2} b^{2} x}{2} - \frac{a^{2} b^{2} {\color{red}{\int{\cos{\left(u \right)} d u}}}}{8} = \frac{a^{2} b^{2} x}{2} - \frac{a^{2} b^{2} {\color{red}{\sin{\left(u \right)}}}}{8}$$

Ricordiamo che $$$u=4 x$$$:

$$\frac{a^{2} b^{2} x}{2} - \frac{a^{2} b^{2} \sin{\left({\color{red}{u}} \right)}}{8} = \frac{a^{2} b^{2} x}{2} - \frac{a^{2} b^{2} \sin{\left({\color{red}{\left(4 x\right)}} \right)}}{8}$$

Pertanto,

$$\int{a^{2} b^{2} \sin^{2}{\left(2 x \right)} d x} = \frac{a^{2} b^{2} x}{2} - \frac{a^{2} b^{2} \sin{\left(4 x \right)}}{8}$$

Semplifica:

$$\int{a^{2} b^{2} \sin^{2}{\left(2 x \right)} d x} = \frac{a^{2} b^{2} \left(4 x - \sin{\left(4 x \right)}\right)}{8}$$

Aggiungi la costante di integrazione:

$$\int{a^{2} b^{2} \sin^{2}{\left(2 x \right)} d x} = \frac{a^{2} b^{2} \left(4 x - \sin{\left(4 x \right)}\right)}{8}+C$$

Risposta

$$$\int a^{2} b^{2} \sin^{2}{\left(2 x \right)}\, dx = \frac{a^{2} b^{2} \left(4 x - \sin{\left(4 x \right)}\right)}{8} + C$$$A


Please try a new game Rotatly