Integrale di $$$- \sin^{4}{\left(t \right)} + \sin^{2}{\left(t \right)}$$$

La calcolatrice troverà l'integrale/primitiva di $$$- \sin^{4}{\left(t \right)} + \sin^{2}{\left(t \right)}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \left(- \sin^{4}{\left(t \right)} + \sin^{2}{\left(t \right)}\right)\, dt$$$.

Soluzione

Integra termine per termine:

$${\color{red}{\int{\left(- \sin^{4}{\left(t \right)} + \sin^{2}{\left(t \right)}\right)d t}}} = {\color{red}{\left(\int{\sin^{2}{\left(t \right)} d t} - \int{\sin^{4}{\left(t \right)} d t}\right)}}$$

Applica la formula di riduzione della potenza per $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$ con $$$\alpha=t$$$:

$$- \int{\sin^{4}{\left(t \right)} d t} + {\color{red}{\int{\sin^{2}{\left(t \right)} d t}}} = - \int{\sin^{4}{\left(t \right)} d t} + {\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(2 t \right)}}{2}\right)d t}}}$$

Applica la regola del fattore costante $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ con $$$c=\frac{1}{2}$$$ e $$$f{\left(t \right)} = 1 - \cos{\left(2 t \right)}$$$:

$$- \int{\sin^{4}{\left(t \right)} d t} + {\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(2 t \right)}}{2}\right)d t}}} = - \int{\sin^{4}{\left(t \right)} d t} + {\color{red}{\left(\frac{\int{\left(1 - \cos{\left(2 t \right)}\right)d t}}{2}\right)}}$$

Integra termine per termine:

$$- \int{\sin^{4}{\left(t \right)} d t} + \frac{{\color{red}{\int{\left(1 - \cos{\left(2 t \right)}\right)d t}}}}{2} = - \int{\sin^{4}{\left(t \right)} d t} + \frac{{\color{red}{\left(\int{1 d t} - \int{\cos{\left(2 t \right)} d t}\right)}}}{2}$$

Applica la regola della costante $$$\int c\, dt = c t$$$ con $$$c=1$$$:

$$- \int{\sin^{4}{\left(t \right)} d t} - \frac{\int{\cos{\left(2 t \right)} d t}}{2} + \frac{{\color{red}{\int{1 d t}}}}{2} = - \int{\sin^{4}{\left(t \right)} d t} - \frac{\int{\cos{\left(2 t \right)} d t}}{2} + \frac{{\color{red}{t}}}{2}$$

Sia $$$u=2 t$$$.

Quindi $$$du=\left(2 t\right)^{\prime }dt = 2 dt$$$ (i passaggi si possono vedere »), e si ha che $$$dt = \frac{du}{2}$$$.

L'integrale può essere riscritto come

$$\frac{t}{2} - \int{\sin^{4}{\left(t \right)} d t} - \frac{{\color{red}{\int{\cos{\left(2 t \right)} d t}}}}{2} = \frac{t}{2} - \int{\sin^{4}{\left(t \right)} d t} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{2}$$

Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{2}$$$ e $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:

$$\frac{t}{2} - \int{\sin^{4}{\left(t \right)} d t} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{2} = \frac{t}{2} - \int{\sin^{4}{\left(t \right)} d t} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}}{2}$$

L'integrale del coseno è $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$\frac{t}{2} - \int{\sin^{4}{\left(t \right)} d t} - \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{4} = \frac{t}{2} - \int{\sin^{4}{\left(t \right)} d t} - \frac{{\color{red}{\sin{\left(u \right)}}}}{4}$$

Ricordiamo che $$$u=2 t$$$:

$$\frac{t}{2} - \int{\sin^{4}{\left(t \right)} d t} - \frac{\sin{\left({\color{red}{u}} \right)}}{4} = \frac{t}{2} - \int{\sin^{4}{\left(t \right)} d t} - \frac{\sin{\left({\color{red}{\left(2 t\right)}} \right)}}{4}$$

Applica la formula di riduzione della potenza per $$$\sin^{4}{\left(\alpha \right)} = - \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{\cos{\left(4 \alpha \right)}}{8} + \frac{3}{8}$$$ con $$$\alpha=t$$$:

$$\frac{t}{2} - \frac{\sin{\left(2 t \right)}}{4} - {\color{red}{\int{\sin^{4}{\left(t \right)} d t}}} = \frac{t}{2} - \frac{\sin{\left(2 t \right)}}{4} - {\color{red}{\int{\left(- \frac{\cos{\left(2 t \right)}}{2} + \frac{\cos{\left(4 t \right)}}{8} + \frac{3}{8}\right)d t}}}$$

Applica la regola del fattore costante $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ con $$$c=\frac{1}{8}$$$ e $$$f{\left(t \right)} = - 4 \cos{\left(2 t \right)} + \cos{\left(4 t \right)} + 3$$$:

$$\frac{t}{2} - \frac{\sin{\left(2 t \right)}}{4} - {\color{red}{\int{\left(- \frac{\cos{\left(2 t \right)}}{2} + \frac{\cos{\left(4 t \right)}}{8} + \frac{3}{8}\right)d t}}} = \frac{t}{2} - \frac{\sin{\left(2 t \right)}}{4} - {\color{red}{\left(\frac{\int{\left(- 4 \cos{\left(2 t \right)} + \cos{\left(4 t \right)} + 3\right)d t}}{8}\right)}}$$

Integra termine per termine:

$$\frac{t}{2} - \frac{\sin{\left(2 t \right)}}{4} - \frac{{\color{red}{\int{\left(- 4 \cos{\left(2 t \right)} + \cos{\left(4 t \right)} + 3\right)d t}}}}{8} = \frac{t}{2} - \frac{\sin{\left(2 t \right)}}{4} - \frac{{\color{red}{\left(\int{3 d t} - \int{4 \cos{\left(2 t \right)} d t} + \int{\cos{\left(4 t \right)} d t}\right)}}}{8}$$

Applica la regola della costante $$$\int c\, dt = c t$$$ con $$$c=3$$$:

$$\frac{t}{2} - \frac{\sin{\left(2 t \right)}}{4} + \frac{\int{4 \cos{\left(2 t \right)} d t}}{8} - \frac{\int{\cos{\left(4 t \right)} d t}}{8} - \frac{{\color{red}{\int{3 d t}}}}{8} = \frac{t}{2} - \frac{\sin{\left(2 t \right)}}{4} + \frac{\int{4 \cos{\left(2 t \right)} d t}}{8} - \frac{\int{\cos{\left(4 t \right)} d t}}{8} - \frac{{\color{red}{\left(3 t\right)}}}{8}$$

Applica la regola del fattore costante $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ con $$$c=4$$$ e $$$f{\left(t \right)} = \cos{\left(2 t \right)}$$$:

$$\frac{t}{8} - \frac{\sin{\left(2 t \right)}}{4} - \frac{\int{\cos{\left(4 t \right)} d t}}{8} + \frac{{\color{red}{\int{4 \cos{\left(2 t \right)} d t}}}}{8} = \frac{t}{8} - \frac{\sin{\left(2 t \right)}}{4} - \frac{\int{\cos{\left(4 t \right)} d t}}{8} + \frac{{\color{red}{\left(4 \int{\cos{\left(2 t \right)} d t}\right)}}}{8}$$

L'integrale $$$\int{\cos{\left(2 t \right)} d t}$$$ è già stato calcolato:

$$\int{\cos{\left(2 t \right)} d t} = \frac{\sin{\left(2 t \right)}}{2}$$

Pertanto,

$$\frac{t}{8} - \frac{\sin{\left(2 t \right)}}{4} - \frac{\int{\cos{\left(4 t \right)} d t}}{8} + \frac{{\color{red}{\int{\cos{\left(2 t \right)} d t}}}}{2} = \frac{t}{8} - \frac{\sin{\left(2 t \right)}}{4} - \frac{\int{\cos{\left(4 t \right)} d t}}{8} + \frac{{\color{red}{\left(\frac{\sin{\left(2 t \right)}}{2}\right)}}}{2}$$

Sia $$$v=4 t$$$.

Quindi $$$dv=\left(4 t\right)^{\prime }dt = 4 dt$$$ (i passaggi si possono vedere »), e si ha che $$$dt = \frac{dv}{4}$$$.

Pertanto,

$$\frac{t}{8} - \frac{{\color{red}{\int{\cos{\left(4 t \right)} d t}}}}{8} = \frac{t}{8} - \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{4} d v}}}}{8}$$

Applica la regola del fattore costante $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ con $$$c=\frac{1}{4}$$$ e $$$f{\left(v \right)} = \cos{\left(v \right)}$$$:

$$\frac{t}{8} - \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{4} d v}}}}{8} = \frac{t}{8} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(v \right)} d v}}{4}\right)}}}{8}$$

L'integrale del coseno è $$$\int{\cos{\left(v \right)} d v} = \sin{\left(v \right)}$$$:

$$\frac{t}{8} - \frac{{\color{red}{\int{\cos{\left(v \right)} d v}}}}{32} = \frac{t}{8} - \frac{{\color{red}{\sin{\left(v \right)}}}}{32}$$

Ricordiamo che $$$v=4 t$$$:

$$\frac{t}{8} - \frac{\sin{\left({\color{red}{v}} \right)}}{32} = \frac{t}{8} - \frac{\sin{\left({\color{red}{\left(4 t\right)}} \right)}}{32}$$

Pertanto,

$$\int{\left(- \sin^{4}{\left(t \right)} + \sin^{2}{\left(t \right)}\right)d t} = \frac{t}{8} - \frac{\sin{\left(4 t \right)}}{32}$$

Aggiungi la costante di integrazione:

$$\int{\left(- \sin^{4}{\left(t \right)} + \sin^{2}{\left(t \right)}\right)d t} = \frac{t}{8} - \frac{\sin{\left(4 t \right)}}{32}+C$$

Risposta

$$$\int \left(- \sin^{4}{\left(t \right)} + \sin^{2}{\left(t \right)}\right)\, dt = \left(\frac{t}{8} - \frac{\sin{\left(4 t \right)}}{32}\right) + C$$$A


Please try a new game Rotatly