Integrale di $$$\frac{e_{1}}{t}$$$ rispetto a $$$t$$$

Il calcolatore troverà l'integrale/antiderivata di $$$\frac{e_{1}}{t}$$$ rispetto a $$$t$$$, con i passaggi mostrati.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \frac{e_{1}}{t}\, dt$$$.

Soluzione

Applica la regola del fattore costante $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ con $$$c=e_{1}$$$ e $$$f{\left(t \right)} = \frac{1}{t}$$$:

$${\color{red}{\int{\frac{e_{1}}{t} d t}}} = {\color{red}{e_{1} \int{\frac{1}{t} d t}}}$$

L'integrale di $$$\frac{1}{t}$$$ è $$$\int{\frac{1}{t} d t} = \ln{\left(\left|{t}\right| \right)}$$$:

$$e_{1} {\color{red}{\int{\frac{1}{t} d t}}} = e_{1} {\color{red}{\ln{\left(\left|{t}\right| \right)}}}$$

Pertanto,

$$\int{\frac{e_{1}}{t} d t} = e_{1} \ln{\left(\left|{t}\right| \right)}$$

Aggiungi la costante di integrazione:

$$\int{\frac{e_{1}}{t} d t} = e_{1} \ln{\left(\left|{t}\right| \right)}+C$$

Risposta

$$$\int \frac{e_{1}}{t}\, dt = e_{1} \ln\left(\left|{t}\right|\right) + C$$$A


Please try a new game Rotatly