Integrale di $$$e^{x} \tan^{x}{\left(e \right)}$$$

La calcolatrice troverà l'integrale/primitiva di $$$e^{x} \tan^{x}{\left(e \right)}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int e^{x} \tan^{x}{\left(e \right)}\, dx$$$.

Le funzioni trigonometriche si aspettano l'argomento in radianti. Per inserire l'argomento in gradi, moltiplicalo per pi/180, ad esempio scrivi 45° come 45*pi/180, oppure usa la funzione appropriata aggiungendo 'd', ad esempio scrivi sin(45°) come sind(45).

Soluzione

L'input viene riscritto: $$$\int{e^{x} \tan^{x}{\left(e \right)} d x}=\int{\left(e \tan{\left(e \right)}\right)^{x} d x}$$$.

Apply the exponential rule $$$\int{a^{x} d x} = \frac{a^{x}}{\ln{\left(a \right)}}$$$ with $$$a=e \tan{\left(e \right)}$$$:

$${\color{red}{\int{\left(e \tan{\left(e \right)}\right)^{x} d x}}} = {\color{red}{\frac{\left(e \tan{\left(e \right)}\right)^{x}}{\ln{\left(e \tan{\left(e \right)} \right)}}}}$$

Pertanto,

$$\int{\left(e \tan{\left(e \right)}\right)^{x} d x} = \frac{\left(e \tan{\left(e \right)}\right)^{x}}{\ln{\left(e \tan{\left(e \right)} \right)}}$$

Semplifica:

$$\int{\left(e \tan{\left(e \right)}\right)^{x} d x} = \frac{e^{x} \tan^{x}{\left(e \right)}}{\ln{\left(- \tan{\left(e \right)} \right)} + 1 + i \pi}$$

Aggiungi la costante di integrazione:

$$\int{\left(e \tan{\left(e \right)}\right)^{x} d x} = \frac{e^{x} \tan^{x}{\left(e \right)}}{\ln{\left(- \tan{\left(e \right)} \right)} + 1 + i \pi}+C$$

Risposta

$$$\int e^{x} \tan^{x}{\left(e \right)}\, dx = \frac{e^{x} \tan^{x}{\left(e \right)}}{\ln\left(- \tan{\left(e \right)}\right) + 1 + i \pi} + C$$$A


Please try a new game Rotatly