Integrale di $$$t e^{3}$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int t e^{3}\, dt$$$.
Soluzione
Applica la regola del fattore costante $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ con $$$c=e^{3}$$$ e $$$f{\left(t \right)} = t$$$:
$${\color{red}{\int{t e^{3} d t}}} = {\color{red}{e^{3} \int{t d t}}}$$
Applica la regola della potenza $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=1$$$:
$$e^{3} {\color{red}{\int{t d t}}}=e^{3} {\color{red}{\frac{t^{1 + 1}}{1 + 1}}}=e^{3} {\color{red}{\left(\frac{t^{2}}{2}\right)}}$$
Pertanto,
$$\int{t e^{3} d t} = \frac{t^{2} e^{3}}{2}$$
Aggiungi la costante di integrazione:
$$\int{t e^{3} d t} = \frac{t^{2} e^{3}}{2}+C$$
Risposta
$$$\int t e^{3}\, dt = \frac{t^{2} e^{3}}{2} + C$$$A