Integrale di $$$e^{\frac{y^{2}}{2}}$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int e^{\frac{y^{2}}{2}}\, dy$$$.
Soluzione
Sia $$$u=\frac{\sqrt{2} y}{2}$$$.
Quindi $$$du=\left(\frac{\sqrt{2} y}{2}\right)^{\prime }dy = \frac{\sqrt{2}}{2} dy$$$ (i passaggi si possono vedere »), e si ha che $$$dy = \sqrt{2} du$$$.
Pertanto,
$${\color{red}{\int{e^{\frac{y^{2}}{2}} d y}}} = {\color{red}{\int{\sqrt{2} e^{u^{2}} d u}}}$$
Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\sqrt{2}$$$ e $$$f{\left(u \right)} = e^{u^{2}}$$$:
$${\color{red}{\int{\sqrt{2} e^{u^{2}} d u}}} = {\color{red}{\sqrt{2} \int{e^{u^{2}} d u}}}$$
Questo integrale (Funzione di errore immaginaria) non ha una forma chiusa:
$$\sqrt{2} {\color{red}{\int{e^{u^{2}} d u}}} = \sqrt{2} {\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erfi}{\left(u \right)}}{2}\right)}}$$
Ricordiamo che $$$u=\frac{\sqrt{2} y}{2}$$$:
$$\frac{\sqrt{2} \sqrt{\pi} \operatorname{erfi}{\left({\color{red}{u}} \right)}}{2} = \frac{\sqrt{2} \sqrt{\pi} \operatorname{erfi}{\left({\color{red}{\left(\frac{\sqrt{2} y}{2}\right)}} \right)}}{2}$$
Pertanto,
$$\int{e^{\frac{y^{2}}{2}} d y} = \frac{\sqrt{2} \sqrt{\pi} \operatorname{erfi}{\left(\frac{\sqrt{2} y}{2} \right)}}{2}$$
Aggiungi la costante di integrazione:
$$\int{e^{\frac{y^{2}}{2}} d y} = \frac{\sqrt{2} \sqrt{\pi} \operatorname{erfi}{\left(\frac{\sqrt{2} y}{2} \right)}}{2}+C$$
Risposta
$$$\int e^{\frac{y^{2}}{2}}\, dy = \frac{\sqrt{2} \sqrt{\pi} \operatorname{erfi}{\left(\frac{\sqrt{2} y}{2} \right)}}{2} + C$$$A