Integrale di $$$e^{x} \ln\left(x\right)$$$

La calcolatrice troverà l'integrale/primitiva di $$$e^{x} \ln\left(x\right)$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int e^{x} \ln\left(x\right)\, dx$$$.

Soluzione

Per l'integrale $$$\int{e^{x} \ln{\left(x \right)} d x}$$$, usa l'integrazione per parti $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Siano $$$\operatorname{u}=\ln{\left(x \right)}$$$ e $$$\operatorname{dv}=e^{x} dx$$$.

Quindi $$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$ (i passaggi si possono vedere ») e $$$\operatorname{v}=\int{e^{x} d x}=e^{x}$$$ (i passaggi si possono vedere »).

Quindi,

$${\color{red}{\int{e^{x} \ln{\left(x \right)} d x}}}={\color{red}{\left(\ln{\left(x \right)} \cdot e^{x}-\int{e^{x} \cdot \frac{1}{x} d x}\right)}}={\color{red}{\left(e^{x} \ln{\left(x \right)} - \int{\frac{e^{x}}{x} d x}\right)}}$$

Questo integrale (Integrale esponenziale) non ha una forma chiusa:

$$e^{x} \ln{\left(x \right)} - {\color{red}{\int{\frac{e^{x}}{x} d x}}} = e^{x} \ln{\left(x \right)} - {\color{red}{\operatorname{Ei}{\left(x \right)}}}$$

Pertanto,

$$\int{e^{x} \ln{\left(x \right)} d x} = e^{x} \ln{\left(x \right)} - \operatorname{Ei}{\left(x \right)}$$

Aggiungi la costante di integrazione:

$$\int{e^{x} \ln{\left(x \right)} d x} = e^{x} \ln{\left(x \right)} - \operatorname{Ei}{\left(x \right)}+C$$

Risposta

$$$\int e^{x} \ln\left(x\right)\, dx = \left(e^{x} \ln\left(x\right) - \operatorname{Ei}{\left(x \right)}\right) + C$$$A


Please try a new game Rotatly