Integrale di $$$\frac{e^{2 x}}{2}$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \frac{e^{2 x}}{2}\, dx$$$.
Soluzione
Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{2}$$$ e $$$f{\left(x \right)} = e^{2 x}$$$:
$${\color{red}{\int{\frac{e^{2 x}}{2} d x}}} = {\color{red}{\left(\frac{\int{e^{2 x} d x}}{2}\right)}}$$
Sia $$$u=2 x$$$.
Quindi $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (i passaggi si possono vedere »), e si ha che $$$dx = \frac{du}{2}$$$.
L'integrale diventa
$$\frac{{\color{red}{\int{e^{2 x} d x}}}}{2} = \frac{{\color{red}{\int{\frac{e^{u}}{2} d u}}}}{2}$$
Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{2}$$$ e $$$f{\left(u \right)} = e^{u}$$$:
$$\frac{{\color{red}{\int{\frac{e^{u}}{2} d u}}}}{2} = \frac{{\color{red}{\left(\frac{\int{e^{u} d u}}{2}\right)}}}{2}$$
L'integrale della funzione esponenziale è $$$\int{e^{u} d u} = e^{u}$$$:
$$\frac{{\color{red}{\int{e^{u} d u}}}}{4} = \frac{{\color{red}{e^{u}}}}{4}$$
Ricordiamo che $$$u=2 x$$$:
$$\frac{e^{{\color{red}{u}}}}{4} = \frac{e^{{\color{red}{\left(2 x\right)}}}}{4}$$
Pertanto,
$$\int{\frac{e^{2 x}}{2} d x} = \frac{e^{2 x}}{4}$$
Aggiungi la costante di integrazione:
$$\int{\frac{e^{2 x}}{2} d x} = \frac{e^{2 x}}{4}+C$$
Risposta
$$$\int \frac{e^{2 x}}{2}\, dx = \frac{e^{2 x}}{4} + C$$$A