Integrale di $$$1 - e^{x}$$$ rispetto a $$$e$$$

Il calcolatore troverà l'integrale/antiderivata di $$$1 - e^{x}$$$ rispetto a $$$e$$$, con i passaggi mostrati.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \left(1 - e^{x}\right)\, de$$$.

Soluzione

Integra termine per termine:

$${\color{red}{\int{\left(1 - e^{x}\right)d e}}} = {\color{red}{\left(\int{1 d e} - \int{e^{x} d e}\right)}}$$

Applica la regola della costante $$$\int c\, de = c e$$$ con $$$c=1$$$:

$$- \int{e^{x} d e} + {\color{red}{\int{1 d e}}} = - \int{e^{x} d e} + {\color{red}{e}}$$

Applica la regola della potenza $$$\int e^{n}\, de = \frac{e^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=x$$$:

$$e - {\color{red}{\int{e^{x} d e}}}=e - {\color{red}{\frac{e^{x + 1}}{x + 1}}}=e - {\color{red}{\frac{e^{x + 1}}{x + 1}}}$$

Pertanto,

$$\int{\left(1 - e^{x}\right)d e} = e - \frac{e^{x + 1}}{x + 1}$$

Semplifica:

$$\int{\left(1 - e^{x}\right)d e} = \frac{e \left(x + 1\right) - e^{x + 1}}{x + 1}$$

Aggiungi la costante di integrazione:

$$\int{\left(1 - e^{x}\right)d e} = \frac{e \left(x + 1\right) - e^{x + 1}}{x + 1}+C$$

Risposta

$$$\int \left(1 - e^{x}\right)\, de = \frac{e \left(x + 1\right) - e^{x + 1}}{x + 1} + C$$$A


Please try a new game Rotatly