Integrale di $$$\frac{\cos{\left(\theta \right)}}{1312}$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \frac{\cos{\left(\theta \right)}}{1312}\, d\theta$$$.
Soluzione
Applica la regola del fattore costante $$$\int c f{\left(\theta \right)}\, d\theta = c \int f{\left(\theta \right)}\, d\theta$$$ con $$$c=\frac{1}{1312}$$$ e $$$f{\left(\theta \right)} = \cos{\left(\theta \right)}$$$:
$${\color{red}{\int{\frac{\cos{\left(\theta \right)}}{1312} d \theta}}} = {\color{red}{\left(\frac{\int{\cos{\left(\theta \right)} d \theta}}{1312}\right)}}$$
L'integrale del coseno è $$$\int{\cos{\left(\theta \right)} d \theta} = \sin{\left(\theta \right)}$$$:
$$\frac{{\color{red}{\int{\cos{\left(\theta \right)} d \theta}}}}{1312} = \frac{{\color{red}{\sin{\left(\theta \right)}}}}{1312}$$
Pertanto,
$$\int{\frac{\cos{\left(\theta \right)}}{1312} d \theta} = \frac{\sin{\left(\theta \right)}}{1312}$$
Aggiungi la costante di integrazione:
$$\int{\frac{\cos{\left(\theta \right)}}{1312} d \theta} = \frac{\sin{\left(\theta \right)}}{1312}+C$$
Risposta
$$$\int \frac{\cos{\left(\theta \right)}}{1312}\, d\theta = \frac{\sin{\left(\theta \right)}}{1312} + C$$$A