Integrale di $$$\cot^{3}{\left(\frac{x}{5} \right)} \csc^{3}{\left(\frac{x}{5} \right)}$$$

La calcolatrice troverà l'integrale/primitiva di $$$\cot^{3}{\left(\frac{x}{5} \right)} \csc^{3}{\left(\frac{x}{5} \right)}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \cot^{3}{\left(\frac{x}{5} \right)} \csc^{3}{\left(\frac{x}{5} \right)}\, dx$$$.

Soluzione

Sia $$$u=\frac{x}{5}$$$.

Quindi $$$du=\left(\frac{x}{5}\right)^{\prime }dx = \frac{dx}{5}$$$ (i passaggi si possono vedere »), e si ha che $$$dx = 5 du$$$.

Quindi,

$${\color{red}{\int{\cot^{3}{\left(\frac{x}{5} \right)} \csc^{3}{\left(\frac{x}{5} \right)} d x}}} = {\color{red}{\int{5 \cot^{3}{\left(u \right)} \csc^{3}{\left(u \right)} d u}}}$$

Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=5$$$ e $$$f{\left(u \right)} = \cot^{3}{\left(u \right)} \csc^{3}{\left(u \right)}$$$:

$${\color{red}{\int{5 \cot^{3}{\left(u \right)} \csc^{3}{\left(u \right)} d u}}} = {\color{red}{\left(5 \int{\cot^{3}{\left(u \right)} \csc^{3}{\left(u \right)} d u}\right)}}$$

Metti in evidenza un cotangente e scrivi tutto il resto in termini della cosecante, usando la formula $$$\cot^2\left( u \right)=\csc^2\left( u \right)-1$$$:

$$5 {\color{red}{\int{\cot^{3}{\left(u \right)} \csc^{3}{\left(u \right)} d u}}} = 5 {\color{red}{\int{\left(\csc^{2}{\left(u \right)} - 1\right) \cot{\left(u \right)} \csc^{3}{\left(u \right)} d u}}}$$

Sia $$$v=\csc{\left(u \right)}$$$.

Quindi $$$dv=\left(\csc{\left(u \right)}\right)^{\prime }du = - \cot{\left(u \right)} \csc{\left(u \right)} du$$$ (i passaggi si possono vedere »), e si ha che $$$\cot{\left(u \right)} \csc{\left(u \right)} du = - dv$$$.

L'integrale può essere riscritto come

$$5 {\color{red}{\int{\left(\csc^{2}{\left(u \right)} - 1\right) \cot{\left(u \right)} \csc^{3}{\left(u \right)} d u}}} = 5 {\color{red}{\int{\left(- v^{2} \left(v^{2} - 1\right)\right)d v}}}$$

Applica la regola del fattore costante $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ con $$$c=-1$$$ e $$$f{\left(v \right)} = v^{2} \left(v^{2} - 1\right)$$$:

$$5 {\color{red}{\int{\left(- v^{2} \left(v^{2} - 1\right)\right)d v}}} = 5 {\color{red}{\left(- \int{v^{2} \left(v^{2} - 1\right) d v}\right)}}$$

Expand the expression:

$$- 5 {\color{red}{\int{v^{2} \left(v^{2} - 1\right) d v}}} = - 5 {\color{red}{\int{\left(v^{4} - v^{2}\right)d v}}}$$

Integra termine per termine:

$$- 5 {\color{red}{\int{\left(v^{4} - v^{2}\right)d v}}} = - 5 {\color{red}{\left(- \int{v^{2} d v} + \int{v^{4} d v}\right)}}$$

Applica la regola della potenza $$$\int v^{n}\, dv = \frac{v^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=4$$$:

$$5 \int{v^{2} d v} - 5 {\color{red}{\int{v^{4} d v}}}=5 \int{v^{2} d v} - 5 {\color{red}{\frac{v^{1 + 4}}{1 + 4}}}=5 \int{v^{2} d v} - 5 {\color{red}{\left(\frac{v^{5}}{5}\right)}}$$

Applica la regola della potenza $$$\int v^{n}\, dv = \frac{v^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=2$$$:

$$- v^{5} + 5 {\color{red}{\int{v^{2} d v}}}=- v^{5} + 5 {\color{red}{\frac{v^{1 + 2}}{1 + 2}}}=- v^{5} + 5 {\color{red}{\left(\frac{v^{3}}{3}\right)}}$$

Ricordiamo che $$$v=\csc{\left(u \right)}$$$:

$$\frac{5 {\color{red}{v}}^{3}}{3} - {\color{red}{v}}^{5} = \frac{5 {\color{red}{\csc{\left(u \right)}}}^{3}}{3} - {\color{red}{\csc{\left(u \right)}}}^{5}$$

Ricordiamo che $$$u=\frac{x}{5}$$$:

$$\frac{5 \csc^{3}{\left({\color{red}{u}} \right)}}{3} - \csc^{5}{\left({\color{red}{u}} \right)} = \frac{5 \csc^{3}{\left({\color{red}{\left(\frac{x}{5}\right)}} \right)}}{3} - \csc^{5}{\left({\color{red}{\left(\frac{x}{5}\right)}} \right)}$$

Pertanto,

$$\int{\cot^{3}{\left(\frac{x}{5} \right)} \csc^{3}{\left(\frac{x}{5} \right)} d x} = - \csc^{5}{\left(\frac{x}{5} \right)} + \frac{5 \csc^{3}{\left(\frac{x}{5} \right)}}{3}$$

Semplifica:

$$\int{\cot^{3}{\left(\frac{x}{5} \right)} \csc^{3}{\left(\frac{x}{5} \right)} d x} = \left(\frac{5}{3} - \csc^{2}{\left(\frac{x}{5} \right)}\right) \csc^{3}{\left(\frac{x}{5} \right)}$$

Aggiungi la costante di integrazione:

$$\int{\cot^{3}{\left(\frac{x}{5} \right)} \csc^{3}{\left(\frac{x}{5} \right)} d x} = \left(\frac{5}{3} - \csc^{2}{\left(\frac{x}{5} \right)}\right) \csc^{3}{\left(\frac{x}{5} \right)}+C$$

Risposta

$$$\int \cot^{3}{\left(\frac{x}{5} \right)} \csc^{3}{\left(\frac{x}{5} \right)}\, dx = \left(\frac{5}{3} - \csc^{2}{\left(\frac{x}{5} \right)}\right) \csc^{3}{\left(\frac{x}{5} \right)} + C$$$A


Please try a new game Rotatly